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A model for free-surface viscous fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations:

ρ
(
∂u

∂t
+ (u · ∇)u

)
− div τ +∇p = f

∇ · u = 0

in Ω(t),

Newtonian fluid constitutive law

τ = µDu Du = ∇u + (∇u)T

µ: viscosity parameter,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor,
τ : deviatoric part of the stress tensor



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations:

ρ
(
∂u

∂t
+ (u · ∇)u

)
− div τ +∇p = f

∇ · u = 0

in Ω(t),

The Herschel-Bulkley constitutive law

τ =
(
K |Du|n−1 + τs|Du|−1

)
Du ⇔ |τ | > τs,

Du = 0 ⇔ |τ | ≤ τs.

K > 0: consistency parameter, τs ≥ 0: yield stress parameter, n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor,
τ : deviatoric part of the stress tensor



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations:

ρ
(
∂u

∂t
+ (u · ∇)u

)
− div τ +∇p = f

∇ · u = 0

in Ω(t),

The Herschel-Bulkley constitutive law

τ =
(
K |Du|n−1 + τs|Du|−1

)
Du ⇔ |τ | > τs,

Du = 0 ⇔ |τ | ≤ τs.

Note: Mathematically sound formulations are written in terms of variational inequalities
(Duvaut, Lions 1976).

K > 0: consistency parameter, τs ≥ 0: yield stress parameter, n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor,
τ : deviatoric part of the stress tensor



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations (regularization):

ρ
(
∂u

∂t
+ (u · ∇)u

)
− divµεDu +∇p = f

∇ · u = 0

in Ω(t),

with the shear-dependent effective viscosity

µε = K |Du|n−1
ε + τs|Du|−1

ε , |Du|ε =
√
|Du|2 + ε2.

K > 0: consistency parameter, τs ≥ 0: yield stress parameter, n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization parameter



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations (regularization):

ρ
(
∂u

∂t
+ (u · ∇)u

)
− divµεDu +∇p = f

∇ · u = 0

in Ω(t),

with the shear-dependent effective viscosity

µε = K |Du|n−1
ε + τs|Du|−1

ε , |Du|ε =
√
|Du|2 + ε2.

Modeling error:

‖u0 − uε‖H1 ≤
√
ε

K > 0: consistency parameter, τs ≥ 0: yield stress parameter, n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization parameter



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations (regularization):

ρ
(
∂u

∂t
+ (u · ∇)u

)
− divµεDu +∇p = f

∇ · u = 0

in Ω(t),

with the shear-dependent effective viscosity

µε = K |Du|n−1
ε + τs|Du|−1

ε , |Du|ε =
√
|Du|2 + ε2.

Initial and boundary conditions:

Ω(0) = Ω0, u|t=0 = u0 and u = g on ΓD.

K > 0: consistency parameter, τs ≥ 0: yield stress parameter, n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization parameter



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid equations (regularization):
ρ

(
∂u

∂t
+ (u · ∇)u

)
− divµεDu +∇p = f

∇ · u = 0

µε = K |Du|n−1
ε + τs|Du|−1

ε

in Ω(t),

Ω(0) = Ω0, u|t=0 = u0 and u = g on ΓD.

Balance of the surface tension and stress forces:

(µεDu− p I)nΓ = ςκnΓ − pextnΓ on Γ(t),

and kinematic condition on Γ(t)

vΓ = u|Γ · nΓ.

K > 0: consistency param., τs ≥ 0: yield stress param., n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization param., nΓ: normal vector for Γ(t),
vΓ: normal velocity of Γ(t), ς: surface tension coef., κ: sum of principal curvatures



Interface capturing: Level set approach

Idea:(Sethian, Osher ’87)

Γ(t) = zero-level of a scalar function

The level set function ϕ(x, t)

φ(x, t) =


< 0 for x in fluid domain Ω(t)

> 0 for x in R3 \Ω(t)

= 0 at the free surface

should be an
“approximate signed distance function”.

x(t) ∈ Γ(t) ⇒ φ(x(t), t) = 0.

Level set equation

φt + ũ · ∇φ = 0 in R3

Computational
domain

Γ(t)Ω(t)

⇓



A model for free-surface viscoplastic fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid + level set equations + b.c. + i.c. (coupling between fluid and level
set eqs. are in red):

ρ

(
∂u

∂t
+ (u · ∇)u

)
− divµεDu +∇p = f

∇ · u = 0

µε = K |Du|n−1
ε + τs|Du|−1

ε

in Ω(t),

u|t=0 = u0 and u = g on ΓD, (µεDu− p I)nΓ = ςκnΓ on Γ(t)
∂φ

∂t
+ ũ · ∇φ = 0 in R3 × (0, T ]

φ(0) = φ0,

with nΓ = ∇φ/|∇φ|, and κ = ∇ · nΓ.

Distance property: |∇φ| = 1.

K > 0: consistency param., τs ≥ 0: yield stress param., n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization param., nΓ: normal vector for Γ(t),
vΓ: normal velocity of Γ(t), ς: surface tension coef., κ: sum of principal curvatures



A model for free-surface Newtonian fluid flow

Fluid domain: Ω(t) ∈ R3 with boundary ∂Ω(t) = ΓD ∪ Γ(t)
ΓD: solid part, Γ(t): free surface

Fluid + level set equations + b.c. + i.c. (coupling between fluid and level
set eqs. are in red):

ρ

(
∂u

∂t
+ (u · ∇)u

)
− divµDu +∇p = f

∇ · u = 0
in Ω(t),

u|t=0 = u0 and u = g on ΓD, (µDu− p I)nΓ = ςκnΓ on Γ(t)
∂φ

∂t
+ ũ · ∇φ = 0 in R3 × (0, T ]

φ(0) = φ0,

with nΓ = ∇φ/|∇φ|, and κ = ∇ · nΓ.

Distance property: |∇φ| = 1.

K > 0: consistency param., τs ≥ 0: yield stress param., n > 0: flow index,
ρ: density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor, ε: regularization param., nΓ: normal vector for Γ(t),
vΓ: normal velocity of Γ(t), ς: surface tension coef., κ: sum of principal curvatures



Fundamentals for free-surface Newtonian fluid flow, ρ = 1

• Energy balance:

1

2

∫
Ω(t)
|u(t)|2dx +

∫ t

0

∫
Ω(t)

µ|Du|2 dxdt′ + ς|Γ(t)|

=
1

2

∫
Ω(t)
|u(0)|2dx +

∫ t

0

∫
Ω(t)

f udxdt′ + ς|Γ(0)|,

here |Γ(t)| = measR2(Γ(t)).

• Momentum conservation:∫
Ω(t)

u(t) dx =

∫
Ω(0)

u(0) dx +

∫ t

0

∫
Ω(t)

f dxdt′.

• Angular momentum conservation:∫
Ω(t)

u(t)× xdx =

∫
Ω(0)

u(0)× xdx +

∫ t

0

∫
Ω(t)

f × xdxdt′.

• Mass conservation.

• Volume conservation.

K.Nikitin et al. A splitting method for numerical simulation of free sur-
face flows of incompressible fluids with surface tension. Comput.Methods
Appl.Math., 2015, V.15, No.1, p.59-78



Fundamentals for free-surface viscoplastic fluid flow, ρ = 1

• Energy inequality:

1

2

∫
Ω(t)
|u(t)|2dx +

∫ t

0

∫
Ω(t)

K|Du|1+n + τs|Du|dxdt′ + ς|Γ(t)|

≤
1

2

∫
Ω(t)
|u(0)|2dx +

∫ t

0

∫
Ω(t)

f udxdt′ + ς|Γ(0)|,

here |Γ(t)| = measR2(Γ(t)).

Note: This becomes energy equality (energy balance) for ε > 0, with∫ t
0

∫
Ω(t) µε|Du|2 standing for the dissipation term.

• Plug and yield regions.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}

end of the loop.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

(a) Extend the velocity along normals to Γ(t), u(t)|Ω(t) → ũ(t)|R3:

y0 = x, yn+1 = yn − αφh(yn)∇φh(yn), until |yn+1 − yn| ≤ ε
set uh(x) = uh(yn+1).

(b) Semi-Lagrangian step for ∂φ
∂t

+ ũ · ∇φ = 0

(c) Volume correction: Solve for δ: meas{x : φ(x) < δ} = V olreference and
correct φnew = φ− δ

(d) Update φ to satisfy |∇φ| = 1: Invokes The Marching Cubes method
(Lorensen & Cline, 1987)

2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}

end of the loop.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

(a) Extend the velocity along normals to Γ(t), u(t)|Ω(t) → ũ(t)|R3

(b) Semi-Lagrangian step for ∂φ
∂t

+ ũ · ∇φ = 0

Zalesak’s test: advection by a prescribed velocity field
2-nd order semi-Lagrangian and enhanced with particle-level set

(c) Volume correction: Solve for δ: meas{x : φ(x) < δ} = V olreference and
correct φnew = φ− δ

(d) Update φ to satisfy |∇φ| = 1: Invokes The Marching Cubes method
(Lorensen & Cline, 1987)

2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}
end of the loop.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

2. Remeshing:

(a) Graded octree cartesian mesh gradely adapted to Γ(t+ ∆t) location.

(b) 2D Illustration:

3. Re-interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}

end of the loop.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

2. Remeshing

3. Re-interpolation

(a) trilinear interpolation in cubic cells

(b) Semi-Lagrangian methods and upwind differences also use higher or-
der interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}

end of the loop.



Numerical method

Loop:

1. Level set part: Ω(t)→ Ω(t+ ∆t)

2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t), p(t)} → {u(t+ ∆t), p(t+ ∆t)}

(a) Staggered location of pressure-velocity nodes

(b) Chorin-Yanenko type splitting:

• Semi-Lagrangian meth. for advection and explicit visco-plastic step

• or Solve advection-diffusion for velocity ũ

• Curvature evaluation κ = ∇ · ∇φ/|∇φ|

• Standard projection (pressure-correction) step by the solution of
Poisson equation with

p(t+ ∆t) = ςκ(t+ ∆t) + pext on Γ(t+ ∆t)

end of the loop.



Fundamentals of semi-discrete scheme for Newtonian fluid, ρ = 1

Assumptions: backward Euler, semi-Lagrangian step for u, C3-smooth Γ(t)

• Momentum conservation
∫

Ω(t) f dx = 0:∫
Ωn

un dx =

∫
Ω0

u0 dx.

• Angular momentum conservation
∫

Ω(t) f × xdx = 0:∫
Ωn

un × xdx =

∫
Ω0

u0 × xdx.

• Mass conservation.

• Volume conservation.

• Energy stability bound:

‖uM‖2
ΩM

+
M∑
n=1

µ∆t‖Dun‖2
Ωn
≤ C ς + ‖u0‖2

Ω0
+ c

M∑
n=1

∆t‖f‖2
Ωn

K.Nikitin et al. A splitting method for numerical simulation of free sur-
face flows of incompressible fluids with surface tension. Comput.Methods
Appl.Math., 2015, V.15, No.1, p.59-78



3D flow around a cylinder, Re=20

• on walls u = 0

• on inlet u = (0,0,16Ũxy(H − x)(H − y)/H4)T on Γin, Ũ = 0.45ms−1

• on outlet µ∂u
∂n
− pn|Γout

= 0, µ = 10−3m2s−1



3D flow around a cylinder, Re=20

hmin hmax Cdrag Clift ∆p
`/128 `/64 3.07235 -0.019821 0.13840
`/256 `/64 6.20151 0.00778 0.15961
`/512 `/64 6.15078 0.00962 0.16298
`/1024 `/64 6.14193 0.00990 0.16636
Braack & Richter 6.18533 0.009401
Schäfer & Turek 6.05–6.25 0.008–0.01 0.165–0.175

Cdrag =
2

DHŨ2

∫
S

(
µ
∂(u · t)
∂n

nx − pnz
)
ds Clift = −

2

DHŨ2

∫
S

(
µ
∂(u · t)
∂n

nz + pnx

)
ds



Sloshing tank

Value dimenshioned adimensioned
Lengths D = 0.3 m D̃ = 1.0

H = 0.1 m H̃ = 0.3333
W = 0.8 m W̃ = 2.6667

Frequency f = 0.89 s−1 f̃ = 0.156
Gravity acc. g = 9.81 ms−2 g̃ = 1.0
Viscosity ν = 1.0× 10−6 m2s−1 ν̃ = 1.943× 10−6

• Length of tank W and horizontal excitation period are chosen to generate
the mode with λ = 2W

• After 10 periods excitation is turned off

• On walls we impose slip b.c.

• We measure heights of waves on walls hleft(t), hright(t)

• We compare free surfaces after 1 period of excitation



Sloshing tank

Reference heights Computed heights

A. Huerta and W. Liu. Viscous flow with large free surface motion



Sloshing tank

Reference free surface after 1 period Computed free surface after 1 period

A. Huerta and W. Liu. Viscous flow with large free surface motion



Free surface flow passing offshore oil platform

• Bulk computational domain: 440m×110m×110m.

• The sea depth 55m

• Wave length λ = 110m, height A = 11.5m, period T = 8.4s (maximal for
Kara sea)

• Inlet x = 0 and outlet boundaries x = 440m have prescribed Dirichlet
b.c.

• Other boundaries (except free surface) have slip b.c.

• Compute highest water levels at the platform and dynamic forces expe-
rienced by the construction

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Free surface flow passing offshore oil platform

An operating offshore unit and the mesh for wave runup simulation

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Free surface flow passing offshore oil platform

Velocities at inlet and outlet are given by the 3d order Stokes waves

uwave(x, y, z, t) = (u(x, z, t),0, w(x, z, t))T for z ≤ η2D(x, y, t),

where η2D(x, y, t) = η(x, t) is the free surface level.

The 3d order Stokes waves are defined by superposition of the 1st order
waves:

η(x, t) = A cos(kx− ωt)
u(x, z, t) = Aωe−kz cos(kx− ωt)
w(x, z, t) = Aωe−kz sin(kx− ωt).

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Free surface flow passing offshore oil platform

Maximum observed water level, central cross-section of the computational
domain

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Free surface flow passing offshore oil platform

A field of normal stresses projection at x-direction

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Free surface flow passing offshore oil platform

K.Nikitin et al. An adaptive numerical method for free surface flows passing
rigidly mounted obstacles. Computers & Fluids, 2017, V.148, 56-68



Freely oscillating droplet problem

Computations for Newtonian fluid

Initial shape:

r = r0(1 + ε̃S2(
π

2
− θ)),

S2: second spherical harmonic, r0 = 1,
Surface tension: ς = 1, ε̃ = 0.3, K = 1/150.

Energy balance for Newtonian fluid:

1

2

∫
Ω(t)
|u(t)|2dx +K

∫ t

0

∫
Ω(t)
|Du|2 dxdt′ + |Γ(t)| =

1

2

∫
Ω(t)
|u(0)|2dx + |Γ(0)|,

here |Γ(t)| = meas(Γ(t)).

For the Newtonian case:

Top tip trajectories on z axes

and

fitting curve z = r∞ + c exp(− t
δ
)

with δ = 16.2 ⇒ numerical dissipa-
tion is an issue.
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Computations for Newtonian fluid

Momentum and angular momentum of freely oscillating droplet



Freely oscillating droplet problem

Computations for Herschel-Bulkley fluid,
n = 1⇒ Bingham

Viscoplastic case, τs > 0

⇓
Finite cessation times?

The kinetic energy decay (left) and top tip trajectories (right) for different
stress yield parameter values, τs ∈ {0, 0.02, 0.03, 0.04}.
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Numerical analysis challenge:

For the explicit time stepping treatment of visco-plastic term

divµεDu one might expect stability condition:

∆t ≤
h2

min

max |µε|
, (in practice max |µε| & 107).

Was not observed in practice!

Observed stability can be related with the non-linear dependence

of µε on u (for large µε the solution is constrained)...

More rigorous explanation would be very desirable.



Computations for Newtonian fluid

Comparison to experiment: Collapsing water column (a.k.a. broken dam).

h

x

y

Ω(0)

0 1 2 3 4

1

2

3

4

5

t

x

h
min

=1/64

h
min

=1/128

h
min

=1/256

h
min

=1/512

experiment

⇐= Convergence to
experimental data
for refined
adapted meshes

Calculation for NSE + level set on octree dynamic meshes
versus

J. Martin and W. Moyce, An experimental study of the collapse of liquid columns
on a rigid horizontal plane, Philos.Trans.R.Soc.Lond.Ser.A, 244 (1952).



Computations for Herschel-Bulkley fluid

t > 0

t = 0

g

ga
te

6

-

z

x

α

� reservoir

� fluid

The sketch of the flow configuration: viscoplastic fluid flows over incline
planes.

Compare to experimental results with Carbopol Ultrez 10 gel from S. Cochard,
C. Ancey, Experimental investigation of the spreading of viscoplastic fluids on
inclined planes, J. Non-Newtonian Fluid Mech. 158 (2009).



Computations for Herschel-Bulkley fluid
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Flow animation: viscoplastic fluid flows over incline planes.
Plots: evolution of the contact line of the free-surface
Parameters: α = 12o, K = 47.68Pas−n, n = 0.415, τs = 89Pa.

Citation from Cochard & Ancey “... we observed two regimes: at the very
beginning (t < 1s), the flow was in an inertial regime; the front velocity was
nearly constant. Then, quite abruptly, a pseudo-equilibrium regime occurred,
for which the front velocity decayed as a power-law function of time.”

S. Cochard, C. Ancey, Experimental investigation of the spreading of viscoplastic
fluids on inclined planes, J. Non-Newtonian Fluid Mech. 158 (2009).



Computations for Herschel-Bulkley fluid
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Flow animation: viscoplastic fluid flows over incline planes.
Plots: evolution of the midplane flow-depth profile
Parameters: α = 12o, K = 47.68Pas−n, n = 0.415, τs = 89Pa.

Citation from Cochard & Ancey “... we observed two regimes: at the very
beginning (t < 1s), the flow was in an inertial regime; the front velocity was
nearly constant. Then, quite abruptly, a pseudo-equilibrium regime occurred,
for which the front velocity decayed as a power-law function of time.”

S. Cochard, C. Ancey, Experimental investigation of the spreading of viscoplastic
fluids on inclined planes, J. Non-Newtonian Fluid Mech. 158 (2009).



Computations for Herschel-Bulkley fluid

Flow animation: viscoplastic fluid flows over incline planes.
Plots: Effective viscosity µε on midplane at t = 0.6s and t = 1s
Parameters: α = 12o, K = 47.68Pas−n, n = 0.415, τs = 89Pa.

The existing shallow-layer theory distinguishes yielding region close to the
bottom boundary and the pseudo-plug region,where the fluid is considered
solid up to higher order terms with respect to the layer thickness.

N. J. Balmforth et al., Viscoplastic flow over an inclined surface, J. Non-Newtonian
Fluid Mech. 139 (2006)



Newtonian fluid
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Herschel-Bulkley fluid

Sayano-Shushenskaya Dam Landslide
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Newtonian and non-Newtonian fluids



Much more (papers, flows animations) on:

www.inm.ras.ru/research/freesurface
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