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Brain neural network: network of networks

Human brain contains approx
86 billions of neural cells 
(nodes). The neurons receive 
electrochemical signals from 
dendrites and transmit them 
through axons. Each neuron has 
approx. 10000 synapses (links). 



Endogenous noise:

Exogenous noise:
• Environmental noise (temperature, pressure)
• Random stimulation (auditory, visual, taktil) 

G. Deco, E. T. Rolls, R. Romo, Stochastic dynamics as a principle of brain 
function,“ Progress in Neurobiology 88, 1 (2009)

• Quasi-random release of neurotransmitters by synapses
• Random synaptic input from other neurons
• Random switching of ion channels
• Stochasticity in N-methyl-D-aspartate activated 

receptors which affect the stability of short-term 
memory and attention

• Random alteration of gamma-amino-butyric acid 
receptor which activates synaptic ion channel 
conductances and determine how likely the system 
jumps into a pathological state

Sources of noise in neural systems



Stochastic brain activity 
underlies important 
mechanisms of brain 
functionality and self-
organization. It plays 
important advantageous role 
in signal detection and 
decision-making by 
preventing deadlocks. 

Why brain noise is 
important
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Endogenous Brain Fluctuations and
Diagnostic Imaging

Vesa Kiviniemi*

Department of Diagnostic Radiology, University of Oulu, Oulu, Finland

Abstract: Much of the rising health care costs in aging populations can be attributed to congenital disease
and psychiatric and neurologic disorders. Early detection of changes related to these diseases can promote
the development of new therapeutic strategies and effective treatments. Changes in tissue, such as dam-
age resulting from continued functional abnormality, often exhibit a time-delay before detection is possi-
ble. Methods for detecting functional alterations in endogenous brain fluctuations allow for an early diag-
nosis before tissue damage occurs, enabling early treatment and a more likely positive outcome. A litera-
ture review and comprehensive overview of the current state of knowledge about endogenous brain
fluctuations is presented here. Recent findings of the association between various pathological conditions
and endogenous fluctuations are discussed. A particular emphasis is placed on research showing the rela-
tionship between clinical measures and pathological findings to the dynamics of endogenous fluctuations
of the brain. Recent discoveries of methods for detecting abnormal functional connectivity are discussed
and future research directions explored. Hum Brain Mapp 29:810–817, 2008. VVC 2008Wiley-Liss, Inc.

Key words: low frequency fluctuations; BOLD fMRI; ICA; FFT; fractal dimension; Hurst exponent;
functional connectivity

INTRODUCTION

Imaging Endogenous Brain Activity With
Functional MRI

Functional magnetic resonance imaging (fMRI) reflects
hemodynamic alterations related to brain function. Blood

oxygen level dependent (BOLD) contrast used in fMRI is
based on detecting changes in local deoxyhemoglobin con-
centration that correlates with local field potentials and
multiunit activity in brain cortex [Logothetis et al., 2004;
Ogawa et al., 1992]. Changes in paramagnetic deoxyhemo-
globin reduces T2/T2* weighted image intensity by
increasing local dephasing of spins. BOLD image signal
change has been correlated to externally controllable neu-
ronal activity in order to detect where the brain activates
in response to functional alterations. Controlled activity is
administered to the subject with external stimuli or the
subject is monitored for specific measurable functions.
In diagnostic imaging fMRI has been used to differenti-

ate eloquent cortex from removable tissue such as tumors
and arterio-venous malformations [Sunaert, 2006]. Contin-
uous attention and motionless participation in response to
the stimuli during an fMRI scan is challenging for many
patients. Some diseases and medications alter the brain
hemodynamics and make the detection of stimulus related
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Blood oxygen level
dependent (BOLD) contrast
is based on detecting
changes in local 
deoxyhemoglobin con-
centration that correlates
with local field potentials
and multiunit activity in 
brain cortex

fMRI study reflects hemodynamic
alterations related to brain functions. 
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Subthreshold voltage noise of rat neocortical
pyramidal neurones

Gilad A. Jacobson1,2, Kamran Diba3, Anat Yaron-Jakoubovitch1,2, Yasmin Oz1, Christof Koch3,
Idan Segev1,2 and Yosef Yarom1,2

1Department of Neurobiology and 2The Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem 91904, Israel
3Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA

Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests
itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a
neurone’s output but have also been suggested to play a computational role. We present a
detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer
IV–V pyramidal neurones in slices taken from rat neocortex. The dependence of the noise
on holding potential, synaptic activity and Na+ conductance is systematically analysed. We
demonstrate that voltage noise increases non-linearly as the cell depolarizes (from a standard
deviation (S.D.) of 0.19 mV at −75 mV to an S.D. of 0.54 mV at −55 mV). The increase in
voltage noise is accompanied by an increase in the cell impedance, due to voltage dependence
of Na+ conductance. The impedance increase accounts for the majority (70%) of the voltage
noise increase. The increase in voltage noise and impedance is restricted to the low-frequency
range (0.2–2 Hz). At the high frequency range (5–100 Hz) the voltage noise is dominated by
synaptic activity. In our slice preparation, synaptic noise has little effect on the cell impedance.
A minimal model reproduces qualitatively these data. Our results imply that ion channel noise
contributes significantly to membrane voltage fluctuations at the subthreshold voltage range,
and that Na+ conductance plays a key role in determining the amplitude of this noise by acting
as a voltage-dependent amplifier of low-frequency transients.

(Resubmitted 14 December 2004; accepted after revision 27 January 2005; first published online 3 February 2005)
Corresponding author Y. Yarom: Department of Neurobiology, Institute of Life Sciences, The Hebrew University,
Jerusalem 91904, Israel. Email: yarom@vms.huji.ac.il

Neurones, as the units of computation in the brain,
integrate their many inputs in a complicated fashion, and
communicate with other cells by sending discrete pulses
– action potentials – through their axons. In essence,
neurones perform a transformation from inputs, which
manifest themselves as subthreshold synaptic potentials,
to an output that consists of all-or-none discrete events.
However, the neurone is prone to many sources of
noise, leading to irregular fluctuations of the membrane
potential. These may hinder the ability of a neurone to
generate a reproducible response to incoming stimuli,
and may therefore limit its computational power. The
irreproducibility of spike trains across repetitions of a
stimulus has been quantified in many different ways
(Mainen & Sejnowski, 1995; Victor & Purpura, 1996; de
Ruyter van Steveninck et al. 1997; Nowak et al. 1997).
At least two studies have shown how subthreshold noise

G. A. Jacobson and K. Diba contributed equally to this work.

limits the information capacity of output spike trains
(ionic channel noise: Schneidman et al. 1998; synaptic
noise: London et al. 2002). There has also been growing
interest in the role that noise may play in enhancing
the computational capability of neurones. For example,
neuronal noise may enhance the detectability of weak
signals that would otherwise not reach threshold, a process
known as ‘stochastic resonance’ (Wiesenfeld & Moss,
1995; Stacey & Durand, 2000; Rudolph & Destexhe, 2001;
Stacey & Durand, 2001). Noise can also modulate the
input–output (I–F) curve of neurones (Chance et al. 2002)
and may underlie the contrast invariance exhibited by
complex cells in primary visual cortex (Anderson et al.
2000).

Despite the growing interest in subthreshold aspects of
voltage noise in neurones, only a handful of experiments
directly address the mechanisms involved in shaping the
subthreshold voltage noise. Most of these are theoretical
in nature (Manwani & Koch, 1999a,b; Steinmetz et al.
2000): the very few studies that do measure voltage noise

C© The Physiological Society 2005 DOI: 10.1113/jphysiol.2004.080903
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Listeners performed an auditory discrimination task. They were 
instructed to choose the odd-one-out of three consecutive tones, 
which, unbeknownst to them, were physically identical. 
The subjects felt difference between three identical tones. 

Noise-induced differences in internal representation of physically 
identical stimuli are treated by the brain in the same way as 
differences in physical stimuli.
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Autism spectrum disorder (ASD) is characterized by a 
broad range of psychological and behavioural features, 
spanning social, language, executive, motor and perceptual 
domains. Previous research within the three defining symp-
tom domains (social communication, language and repeti-
tive behaviours) has spawned several theories of autism, the 
most successful of which highlight broad commonalities 
between symptoms across domains and propose single cog-
nitive or neural mechanisms for them. Here, we term these 
‘heuristic’ theories, in reference to their application of a sin-
gle, fairly simple principle across multiple domains (e.g. 
Theory of Mind Deficit, Baron-Cohen et al., 1985; Weak 
Central Coherence, Frith, 1989; Executive Dysfunction 
Theory, Pennington and Ozonoff, 1996; Russell, 1997; 
Enhanced Perceptual Functioning, Mottron et al., 2006; 
Reduced Generalization Theory, Plaisted, 2000, 2001; 
Theory of Hypo-Priors, Pellicano and Burr, 2012).

It is unlikely that any heuristic theory can account for 
the broader landscape of autistic features and symptoms. 
Indeed, the heterogeneity of the disorder would seem to 
preclude such an explanation, and the current general 
stance is one of caution in applying a single deficit theory 
to account for the disparate set of research findings and 
clinical symptoms of ASD (Happé et al., 2006). 
Nonetheless, single process theories can provide a clear 
starting framework by which to begin to explore seem-
ingly intractable individual diversity and complexity; they 
remain a powerful stimulus for research, highlighting 
commonalities between aspects of autistic features that 

have no transparent relation (the Weak Central Coherence 
hypothesis proposed by Frith, 1989, provides a compelling 
and enduring example).

We focus here on another heuristic proposal, that there 
are high levels of endogenous neural noise in autism, ren-
dering neural signals ‘noisy’ and unreliable (Rubenstein and 
Merzenich, 2003; Simmons et al., 2007, 2009). One appeal 
of this hypothesis, as of any that considers neural processes 
that may affect synaptic connectivity, is its potential applica-
tion to understanding atypical long- and short-range struc-
tural and functional connectivity in autism (Belmonte et al., 
2004; Domínguez et al., 2013; Minshew and Williams, 
2007). The hypothesis of increased neural noise has under-
gone refinement recently by Simmons et al. (2009), who 
emphasized that, because neural noise can either enhance or 
disrupt stimulus detection and discrimination under differ-
ent circumstances, excessive neural noise might explain 
both enhanced and impoverished performance in autism, a 
key hurdle for heuristic theories. Milne (2011) subjected the 
proposal that neural signatures in ASD are noisy and unreli-
able to its first direct test, and found higher trial-to-trial  
variability in electroencephalography (EEG) recordings in 

Low endogenous neural noise in autism

Greg Davis and Kate Plaisted-Grant

Abstract
‘Heuristic’ theories of autism postulate that a single mechanism or process underpins the diverse psychological features 
of autism spectrum disorder. Although no such theory can offer a comprehensive account, the parsimonious descriptions 
they provide are powerful catalysts to autism research. One recent proposal holds that ‘noisy’ neuronal signalling explains 
not only some deficits in autism spectrum disorder, but also some superior abilities, due to ‘stochastic resonance’. 
Here, we discuss three distinct actions of noise in neural networks, arguing in each case that autism spectrum disorder 
symptoms reflect too little, rather than too much, neural noise. Such reduced noise, perhaps a function of atypical 
brainstem activation, would enhance detection and discrimination in autism spectrum disorder but at significant cost, 
foregoing the widespread benefits of noise in neural networks.
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Structural correlates of cognitive deficit and elevated gamma
noise power in schizophrenia
Vanessa Suazo, MSc,1,3 Álvaro Díez, PhD,2,3,6 Carlos Montes, MSc3,4 and
Vicente Molina, MD, PhD1,3,5*
1Neuroscience Institute of Castilla y León, 2Basic Psychology, Psychobiology and Methodology Department, School of
Psychology, University of Salamanca, 3Biomedical Research Institute of Salamanca, 4Radiophysics Service, University
Hospital of Salamanca, Salamanca, 5Psychiatry Service, University Hospital of Valladolid, University of Valladolid,
Valladolid, Spain, and 6Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, London, UK

Aims: The aim of this study was to assess the relation
between cognition, gray matter (GM) volumes and
gamma noise power (amount of background oscilla-
tory activity in the gamma band) in schizophrenia.

Methods: We explored the relation between cog-
nitive performance and regional GM volumes using
voxel-based morphometry (VBM), in order to discover
if the association between gamma noise power (an
electroencephalography measurement of background
activity in the gamma band) and cognition is observed
through structural deficits related to the disease. Noise
power, magnetic resonance imaging and cognitive
assessments were obtained in 17 drug-free paranoid
patients with schizophrenia and 13 healthy controls.

Results: In comparison with controls, patients
showed GM deficits at posterior cingulate (bilateral),

left inferior parietal (supramarginal gyrus) and left
inferior dorsolateral prefrontal regions. Patients
exhibited a direct association between performance in
working memory and right temporal (superior and
inferior gyri) GM densities. They also displayed a
negative association between right anterior cerebel-
lum volume and gamma noise power at the frontal
midline (Fz) site.

Conclusion: A structural deficit in the cerebellum
may be involved in gamma activity disorganization
in schizophrenia. Temporal structural deficits may
relate to cognitive dysfunction in this illness.

Key words: cerebellum, gamma oscillations, noise
power, schizophrenia, working memory.

THE EXTENT TO which cognitive and cerebral ana-
tomical abnormalities in schizophrenia are related

to each other is unclear.1–3 Further understanding of
the possible relation between structural and cognitive
deviation in schizophrenia could be achieved by
assessing the relation between GM volumes and neu-
rophysiological measures known to be associated to
cognition in this disease. Gamma oscillations can be

of interest in this respect, since they may contribute to
coherent percepts construction by the brain and to
the strengthening and weakening of synaptic links.4

Gamma band alterations have been reported in
schizophrenia,5 possibly through GABA hypofunc-
tion,6 which may also contribute to structural altera-
tions in schizophrenia.7

Noise power is among the gamma-related measure-
ments previously used in schizophrenia literature8–10

and it is defined as the amount of background
oscillatory activity assessed while the participant is
engaged in a task. More specifically, this term refers
to the amount of scalp-recorded power not temp-
orally locked to stimuli, quantified as the power dif-
ference in each band (gamma in this case) between
the magnitude of single trials (i.e., total signal) and
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row band of optimal levels of noise may also enhance  
perceptual detection and discrimination via ‘stochastic 
resonance’, a property of non-linear systems in which 
addition of noise can facilitate detection and discrimina-
tion of subthreshold signals. Its effects have been observed 
in single unit recordings (e.g. Destexhe and Contreras, 
2006; Hänggi, 2002; Lopes et al., 2013; Manjarrez et al., 
2007; Sasaki et al., 2008) and, more controversially, are 
claimed to arise in human observers’ perceptual thresholds 
(Goris et al., 2008).

To illustrate how stochastic resonance might operate, 
imagine a sensory neuron that only responds when stimu-
lus intensity at any one time reaches a threshold value. 
Stimulating this cell with a repeating signal that is sub-
threshold (not sufficiently strong to reach threshold) will 
never yield a response. However, adding white noise to 
the signal can improve the cell’s detection of it. The upper 
and lower panels on the left of Figure 1(a) represent this 
situation; a subthreshold stimulus is changing in intensity 
sinusoidally over time and, in the relative absence of noise, 
as in the lower panel, fails ever to reach the cell’s threshold 
– the cell will show no response. In the upper panel, how-
ever, a greater magnitude of noise has been added to the 
signal. The mean value of the noise is zero so it does not 
increase mean stimulation over time: half the time, it will 

effectively decrease the cell’s stimulation, and half the 
time, it will increase stimulation. Nonetheless, when posi-
tive values of the added noise and a signal peak are 
summed, the total stimulation exceeds the cell’s threshold 
and the cell responds (see Figure 1 legend). This illustrated 
mechanism will respond (i.e. will be able to detect signals) 
in the presence of noise, without which it could not. 
Crucially, the beneficial noise need not be present in the 
stimulus: It could be ‘endogenous’ noise added by the cell 
itself. Further, no hard threshold is required for a system to 
display such effects; the types of nonlinear increments in 
neurons’ responses that pervade biological perceptual sys-
tems seem to permit stochastic resonance (Braun et al., 
1994; Levin and Miller, 1996), including in-human per-
ception (e.g. Goris et al., 2008).

Simmons et al. (2009) noted that if the autistic brain 
were noisier than the neurotypical brain, the principle of 
stochastic resonance could be applied to research findings 
to account both for superior and inferior performance in 
ASD. To illustrate this potential, they highlighted Bertone 
et al.’s (2005) finding that individuals with autism exhib-
ited greater sensitivity for first-order (luminance-defined) 
stimuli yet reduced sensitivity for second-order (contrast-
defined) stimuli, relative to neurotypical individuals. 
Simmons et al. (2009) argued that both enhanced and 

Figure 1. Three basic actions of noise in neural network, cartooned for a brain with notionally optimal noise (upper panels) and for 
a low-noise brain (lower panels). (a) The red line in the upper and lower panel represents a cell’s threshold for responding. When a 
subthreshold stimulus is applied to the cell, threshold is not reached when little or no noise is added (lower panel). However, with 
the addition of sufficient white noise to the signal, the signal and noise intermittently sum to reach the cell’s threshold and elicits 
a response. Hence, noise can facilitate detection of weak signals. (b) The blue lines in the upper and lower panels represent the 
landscape of potential states of a neural network and its current state is indicated by the red dot, which in the absence of noise will 
predictably tend to gravitate towards, and then remain in, the nearest stable state (depicted as a tendency to ‘roll downhill’ and to 
settle when it reaches a local minimum − see lower panel). However, noise (upper panel) randomly perturbs the network’s state 
so that it can ‘jump’ to a state from which it will then tend to gravitate towards a different stable state. That is, noise can cause a 
network to shift from one state to another. (c) When two stimuli, differing along a single feature dimension, are represented by a 
network, the variability of these representations can be represented as two Gaussian distributions around the mean representations. 
When there is little noise in a network (lower panel), there will be little common activation between the two representations 
rendering them highly discriminable, but there will also be no basis for generalizing learning about one stimulus to the other stimulus. 
Conversely, in a higher-noise network (upper panel), the greater overlap between the representations will impoverish the network’s 
discrimination of them, but will afford an intrinsic basis for generalizing learning about one stimulus to the other.
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We study the dynamics of the excitable Fitz Hugh–Nagumo system under external noisy driving.
Noise activates the system producing a sequence of pulses. The coherence of these noise-induced
oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence
resonance is explained by different noise dependencies of the activation and the excursion times.
A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative
description of this phenomenon. [S0031-9007(97)02349-1]
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The response of dynamical systems to noise has at-
tracted large attention recently. There are many examples
demonstrating that noise can lead to more order in the
dynamics. To be mentioned here are the effects of noise-
induced order in chaotic dynamics [1], synchronization by
external noise [2], and stochastic resonance [3–5]. Also,
noise has been shown to play a stabilizing role in ensem-
bles of coupled oscillators and maps [6]. Especially inter-
esting is the phenomenon of stochastic resonance, which
appears when a nonlinear system is simultaneously driven
by noise and a periodic signal. At a certain noise am-
plitude the periodic response is maximal; this has been
confirmed by numerous experimental studies (cf. [7,8]).
In this paper we study the effect of noise on the

autonomous excitable oscillator—the famous Fitz Hugh–
Nagumo system. We demonstrate that a characteristic
correlation time of the noise-excited oscillations has a
maximum for a certain noise amplitude, and present
a theory of this effect. Contrary to the usual setup
of stochastic resonance, no external periodic driving is
assumed, so the coherence appears as a nonlinear response
to purely noisy excitation. The phenomenon considered is
also different from stochastic resonance without periodic
force reported recently in Ref. [9], where the effect of
noise on a limit cycle at a bifurcation point was studied.
The Fitz Hugh–Nagumo model is a simple but represen-

tative example of excitable systems that occur in different
fields of application ranging from kinetics of chemical re-
actions and solid-state physics to biological processes [10].
Originally it was suggested for the description of nerve
pulses [11]; it was also widely used for modeling of spi-
ral waves in a two-dimensional excitable medium. Differ-
ent aspects of the dynamics of this and similar excitable
models in the presence of noise have been discussed in
Refs. [12–16]. The equations of motion are

(1)

(2)

Here is a small parameter allowing one to sepa-
rate all motions in the fast (only changes) and slow

ones. The parameter governs the char-
acter of solutions: For the only attractor is a stable
fixed point, and for a limit cycle appears. This
cycle consists of two pieces of slow motion connected
with fast jumps. For slightly larger than one the sys-
tem is excitable; i.e., small but finite deviations from the
fixed point produce large pulses. Indeed, if the perturba-
tion brings the system to the border of the slow branch
on which the stable fixed point lies, the jump to another
slow branch happens and the system returns to the stable
fixed point only after a large excursion. This highly non-
linear response to perturbations makes the dynamics of the
forced Fitz Hugh–Nagumo system nontrivial. Finally, the
parameter governs the amplitude of the noisy external
force which we assume to be Gaussian delta-correlated
with zero mean: [17].
We integrate system (1), (2) numerically using Euler’s

method [18] for the parameters , , and
different noise amplitudes. The results reported in Fig. 1
show that for both small and large noise amplitudes, the
noise-excited oscillations appear to be rather irregular,
while for moderate noise relatively coherent oscillations
are observed. This phenomenon, which we call coherence
resonance, resembles the well-known stochastic reso-
nance [3–5]. The stochastic resonance appears if both
periodic and noisy forces drive a nonlinear system, with
the periodic response having a maximum at some noise
amplitude. In our case there is, however, no periodic
force (cf. [9,19]) and no discrete component appears in
the spectrum, but at some noise amplitude the regularity
of the process is, nevertheless, maximal.
To characterize this ordering quantitatively, we com-

pute the normalized autocorrelation function

(3)

One can see from Fig. 2 that the correlations are indeed
much more pronounced for the moderate noise. To
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FIG. 1. The dynamics of the Fitz Hugh–Nagumo system

[Eqs. (1), (2)] for , and different noise
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pulse are depicted.
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readily obtained numerically, for the convenience of the

theoretical consideration we introduce another quantity

(which can be interpreted, in the context of stochastic

resonance terminology, as noise-to-signal ratio). Because

the process Fig. 1 can be viewed as a sequence of

pulses having durations , we look at the normalized

fluctuations of pulse durations
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This quantity, reported in Fig. 3, shows a minimum

at . Below we develop a theoretical approach to

calculating .

FIG. 2. The autocorrelation function of the regimes presented

in Fig. 1.

Physically, the appearance of coherence resonance is

deeply related to the excitable nature of the Fitz Hugh–

Nagumo system. The system has two characteristic times:

the activation time and the excursion time . The

FIG. 3. Correlation time (solid line) and the noise-to-signal

ratio [Eq. (5), dashed line] vs noise amplitude for the Fitz

Hugh–Nagumo system with .
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assumed, so the coherence appears as a nonlinear response
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noise on a limit cycle at a bifurcation point was studied.
The Fitz Hugh–Nagumo model is a simple but represen-
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Originally it was suggested for the description of nerve
pulses [11]; it was also widely used for modeling of spi-
ral waves in a two-dimensional excitable medium. Differ-
ent aspects of the dynamics of this and similar excitable
models in the presence of noise have been discussed in
Refs. [12–16]. The equations of motion are
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Here is a small parameter allowing one to sepa-
rate all motions in the fast (only changes) and slow

ones. The parameter governs the char-
acter of solutions: For the only attractor is a stable
fixed point, and for a limit cycle appears. This
cycle consists of two pieces of slow motion connected
with fast jumps. For slightly larger than one the sys-
tem is excitable; i.e., small but finite deviations from the
fixed point produce large pulses. Indeed, if the perturba-
tion brings the system to the border of the slow branch
on which the stable fixed point lies, the jump to another
slow branch happens and the system returns to the stable
fixed point only after a large excursion. This highly non-
linear response to perturbations makes the dynamics of the
forced Fitz Hugh–Nagumo system nontrivial. Finally, the
parameter governs the amplitude of the noisy external
force which we assume to be Gaussian delta-correlated
with zero mean: [17].
We integrate system (1), (2) numerically using Euler’s

method [18] for the parameters , , and
different noise amplitudes. The results reported in Fig. 1
show that for both small and large noise amplitudes, the
noise-excited oscillations appear to be rather irregular,
while for moderate noise relatively coherent oscillations
are observed. This phenomenon, which we call coherence
resonance, resembles the well-known stochastic reso-
nance [3–5]. The stochastic resonance appears if both
periodic and noisy forces drive a nonlinear system, with
the periodic response having a maximum at some noise
amplitude. In our case there is, however, no periodic
force (cf. [9,19]) and no discrete component appears in
the spectrum, but at some noise amplitude the regularity
of the process is, nevertheless, maximal.
To characterize this ordering quantitatively, we com-

pute the normalized autocorrelation function
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One can see from Fig. 2 that the correlations are indeed
much more pronounced for the moderate noise. To
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pulse are depicted.
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Abstract. – We show the existence of a system size coherence resonance effect for cou-
pled excitable systems. Namely, we demonstrate numerically that the regularity in the signal
emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by
independent noise sources, is optimal for a particular value of the number of coupled systems.
This resonance is shown through several different dynamical measures: the time correlation
function, correlation time and jitter.

Noise-induced resonance is a topic that has attracted a lot of attention in the last years.
In particular, it has been unambiguously shown that the response of some systems to an
external perturbation can be enhanced by the presence of noise (stochastic resonance [1–4]).
A different effect is that of coherence resonance [5] by which an excitable system shows a
maximum degree of regularity in the emitted signal in the presence of the right amount
of fluctuations (or the related one of stochastic resonance without the need of an external
forcing [6, 7]). Coherence resonance has also been studied in dynamical systems close to the
onset of a bifurcation [8], as well as in other bistable and oscillatory systems [9, 10]. It has
also been analyzed in different neuronal models such as the FitzHugh-Nagumo [11, 12] and
Hodgkin-Huxley [13] models. It has been observed experimentally in electronic circuits, either
excitable [14,15] or chaotic [16,17], and in lasers operating in an excitable regime [18].

In an important recent paper [19], Pikovsky et al. have shown that when one considers
an ensemble of coupled bistable systems subjected to an external periodic forcing (and in the
presence of a constant amount of noise), it turns out that an optimal response is obtained
for an appropriate value of the number N of coupled systems. In other words, that there is
a resonance with respect to the number of coupled elements, rather than to the usual one
that involves the noise level. The authors speculate that this system size resonance might be

(∗) Permanent address.

c© EDP Sciences
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Fig. 2 – Time series for the averaged variable Y (t) (left panel), and the individual variable y1(t) (right
panel) of the set of FitzHugh-Nagumo systems, eqs. (1)-(2). Similarly as in fig. 1, observe that again
the largest regularity for the averaged Y variable is obtained for the intermediate value of N . In this
case, however, there is no obvious increase in the regularity of the yi individual variables.

collective variable X(t) and xi(t) are very well synchronized in time, indicating that the
individual systems are pulsing synchronously in time. In fig. 2 (left panel) we plot the time
trace for the slow variable Y (t), as well as a time trace for a single one yi(t) (right panel). At
variance with the fast variable X, it turns out that the averaged Y (t) shows a very nice regular
behavior for an intermediate number of elements, while the individual traces yi(t) do not.

We have computed two indicators commonly used to quantify this effect [5]. First, we have
computed the time correlation function CX(t) of the averaged X variable, defined as

CX(t) =
〈δX(t′)δX(t + t′)〉

〈δX(t′)2〉 , δX(t) = X(t) − 〈X(t′)〉 (6)

and similarly for the correlation function CY (t) for the averaged Y variable. Here the averages
〈 〉 are with respect to the time t′, after a small transient has been neglected. Figure 3 shows
this correlation function for both the X and Y variables. It can be seen that the correlations
extend further in time for an intermediate value, neither very large nor very small, of the
number of coupled systems N . To obtain a quantitative indicator of this effect, we define the
characteristic correlation times τX and τY for each variable as

τX,Y =
∫ ∞

0
|CX,Y (t)|dt. (7)

In practice, the upper limit of the integral is replaced by a value tmax such that the correlation
function can be considered as decayed to its asymptotic value CX,Y = 0 (tmax = 50 for the
data shown in fig. 3). We have plotted these two correlation times in the left panel of fig. 4.
Both times reach a maximum at approximately the same value N ≈ 160, indicating that,
for the set of parameters chosen, the maximum extent of the time correlation occurs for this
number of coupled excitable systems.

Another common indicator for the regularity of the emitted pulses can be obtained by
the jitter of the time between pulses [5]. A pulse in the X(t) variable is defined when X(t)
exceeds a certain threshold value X0 (taken arbitrarily as X0 = 0.3, although other values
yield similar results). The jitter RX is defined as the root mean square of the time TX between
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Fig. 3 – Correlation functions CX(t) and CY (t) of the averaged variables X(t) and Y (t), respectively,
for the cases of N = 1 (dotted line), N = 160 (solid line) and N = 1000 (dashed line). Notice that, in
agreement with the qualitative results derived from figs. 1 and 2, the slower decay of the correlations
corresponds to the intermediate values of the system size N . Same parameters as in fig. 1.

two consecutive pulses normalized to its mean value:

RX =
σ[TX ]
〈TX〉 (8)

and an equivalent definition holds for the jitter RY of the Y variable. The smaller the value
of RX,Y , the larger the regularity of the pulses (a value of RX,Y = 0 indicates a perfectly
periodic signal). It is shown in the right panel of fig. 4 that indeed the jitter in both variables
have a well-defined minimum at a value of N ≈ 80, again showing the existence of the system
size resonance. When comparing with the results of the correlation time, it is not uncommon
that the two indicators (the correlation time τ and the jitter R) have their optimal values at
different values of the system parameters [5, 16].

In summary, we have shown that an ensemble of globally coupled FitzHugh-Nagumo ex-
citable systems subjected to independent noises pulse on average with a regularity that is
maximum for a given value of the number N of coupled systems. An approximate calculation
indicates that the collective variable Y (t) is subjected to a noise of effective intensity D/

√
N .

Fig. 4 – Panel (a) plots the correlation times τX and τY as obtained by integration of the absolute
value of the respective correlation functions. Clear maxima (maximum extent of the correlations)
can be observed around N = 160. Panel (b) plots the jitter of the time between consecutive pulses
of the collective variables X(t) (asterisks) and Y (t) (triangles). Clear minima (optimal regularity in
the emitted pulses) can be observed around N = 80 in both cases.

The coherence resonance has also been detected in other neuron models: 
Morris–Lecar [Wang M S, Hou Z H, Xin H W 2006 Chin. Phys. 15 2553] 
Hodgkin–Huxley [Lee S G, Neiman A, Kim S 1998 Phys. Rev. E 57 3292]

Globally coupled 
with the same 
electrical coupling

Collective variables:
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Fig. 1 – Time series for the averaged variable X(t) (left panel), and for the individual variable x1(t)
(right panel) of the set of coupled FitzHugh-Nagumo systems, as obtained from a numerical integration
of eqs. (1)-(2), for different values of the number of coupled elements: N = 1 (top), N = 160 (middle)
and N = 1000 (bottom). Observe that the largest regularity is obtained for the intermediate value of
N . The equations have been integrated numerically using a stochastic Runge-Kutta method (known
as the Heun method [26]) with a time step h = 10−4 and setting the following parameters: a = 1.1,
ε = 0.01, K = 2, D = 0.7.

activator and inhibitor variables as

X(t) =
1
N

N
∑

i=1

xi(t), Y (t) =
1
N

N
∑

i=1

yi(t). (3)

By following the approach by Desai and Zwanzig [27] (see also ref. [19]), it is possible to reach
an approximate effective equation for these average values of the form

εẊ = F (X,K) − Y, (4)

Ẏ = X + a +
D√
N

ξ(t), (5)

where ξ(t) is a white-noise source. Although the exact form of the function F (X,K), which
depends on the global variable X as well on the coupling strength K, and the analysis of
the approximations assumed in the derivation will be presented elsewhere, we need only to
remark here that in the (exact) equation for Y (t) the noise intensity appears rescaled as
D/

√
N . Therefore, this approximation suggests that the optimal effective noise intensity

for the appearance of coherence resonance can be achieved by varying the number of coupled
elements N , as in the case of stochastic resonance for the bistable system considered in [19]. To
go beyond this approximation, we numerically integrate the equations of motion (1) and (2).

The left panel of fig. 1 shows the time trace for the variable X(t), while the right panel
of the same figure shows the time trace for the variable xi(t) of one of the elements chosen
randomly, for three different values of the number of coupled elements (see the caption of the
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of the emitted pulses is better than that corresponding to larger or smaller values of N . This
is a clear signature of coherence resonance. Moreover, it can be seen that the regularity in
the averaged variable X(t) is better than in one of the individual elements, showing that
the coupling allows for a smoothness of the trace. It is worth noting that the peaks in the
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of eqs. (1)-(2), for different values of the number of coupled elements: N = 1 (top), N = 160 (middle)
and N = 1000 (bottom). Observe that the largest regularity is obtained for the intermediate value of
N . The equations have been integrated numerically using a stochastic Runge-Kutta method (known
as the Heun method [26]) with a time step h = 10−4 and setting the following parameters: a = 1.1,
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Stochastic resonance can be used as a measuring tool to quantify the ability of the human brain to

interpret noise contaminated visual patterns. Here we report the results of a psychophysics experiment
which show that the brain can consistently and quantitatively interpret detail in a stationary image
obscured with time varying noise and that both the noise intensity and its temporal characteristics
strongly determine the perceived image quality. [S0031-9007(97)02344-2]

PACS numbers: 87.10.+e, 05.40.+j

Internal noise has long been associated with the ner-
vous system [1–7], thus prompting speculations that it
may serve a useful role in neural computation [2–4,8],
or signal averaging by summation across a population
of neurons in parallel [9,10]. Though tantalizing, this
idea remains undemonstrated in any biological experi-
ment. What has been shown is that external noise added
to a weak signal can enhance its detectability by the pe-
ripheral nervous systems of crayfish [11], crickets [12],
rats [13], and humans [14,15] including possible medical
applications [14,16], and within membranes [17] by the
process of stochastic resonance (SR) [18–20]. Excepting
a recent experiment which demonstrated SR in the human
tactile system [21], the results of these works were ob-
tained by computer analysis of neural recordings. But
how does a complex organ such as a brain analyze similar
weak and noisy signals?
SR has shown in several experiments that external noise

added to a weak environmental signal can enhance the in-
formation content of evoked responses in the peripheral
nervous system [11–16]. In these experiments, record-
ings of temporal sequences of neural action potentials
were made and analyzed by computer for the signal-to-
noise ratio [11,14–16], Shannon information rate, and
the transinformation [12] or stimulus-response coherence
or action potential timing precision [13]. Though noise
enhanced information in the peripheral nervous system
was demonstrated in all experiments, the question remains
whether animals, including man, can make use of the en-
hancement. Specifically, could the computers previously
used for signal and noise analysis in the physiological
experiments be replaced by the human brain in a psycho-
physics experiment, and if so, would the results be com-
parable? We show here that the results are comparable,
accurate, and repeatable and that the process is more effi-
cient for a stationary image with time varying noise than
for the same image with static noise.
Our experiment works with the human visual system

[22–25] and derives from the simplest paradigm of
SR: the nondynamical or threshold theory [26,27]. As
shown in Fig. 1(a), the necessary components are a

threshold, a subthreshold signal, and additive noise. The
system is assumed capable of transmitting single bits of
information, each of which marks a threshold crossing,
as shown by the pulse train above. Figure 1(b) is a
visual realization, where the subthreshold “signal” is an
image digitized on a gray scale and depressed beneath

FIG. 1. (a) The threshold paradigm of SR. A subthreshold
signal is shown by the sine wave plus Gaussian noise whose
mean lies D below the threshold (horizontal line). Each
positive going threshold crossing is marked by a standard pulse
as shown above, the temporal sequence of which transmits the
only information available about the signal through the system.
(b) Visual images composed of a single signal—the picture of
Big Ben—digitized on a 1 to 256 gray scale with a spatial
resolution of 256 by 256 pixels. A random number j, from a
Gaussian distribution with zero mean and standard deviation s,
is added to the original gray value I , in every pixel. Thus
the noise in each pixel is incoherent with that in all other
pixels though the standard deviation is the same for all. The
resulting image is then threshold filtered according to the rule:
if I 1 j , D, the gray value in that pixel is replaced with 256
(white), otherwise with 1 (black), in this example. The pictures
shown were made for D ≠ 30 and for s ≠ 10, 90, and 300 on
the gray scale (left to right).
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a b s t r a c t 
We consider a neuronal network model where an external stimulus excites some neurons, which in turn 
activate other neurons in the network via synapse. We find that the regularity in macroscopic spiking 
activity of the whole neuronal network maximizes at a certain level of intrinsic noise. A similar resonant 
behavior, referred to as coherence resonance, is also observed with respect to the stimulus strength, net- 
work size, and number of stimulated neurons. The coherence is quantitatively estimated with the signal- 
to-noise ratio calculated from the average power spectra of the macroscopic signal and with autocorre- 
lation time. Overall synchronization in the neuronal network also exhibits a non-monotonic dependence 
on the network size. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 
As all real systems, the neural systems are noisy. Among many 

different sources of noise, the ones worth mentioning are quasi- 
random release of neurotransmitters by synapses, random synap- 
tic input from other neurons, and random switching of ion chan- 
nels. Noise plays an advantageous role in the nervous system and 
is needed for its good functionality in all levels of organization, 
starting with cells and ending with the brain. Stochastic processes 
in the brain may have different origins, such as, probabilistic ran- 
dom spontaneous neural activity and random synaptic connections 
[1] . Inherent brain noise plays an important advantageous role 
in signal detection and decision-making by preventing deadlocks, 
underlying important mechanisms of brain functionality and self- 
organization [2–4] . 

In recent years, the effects of noise in neural systems have at- 
tracted a lot of attention of neurophysiologists and physicists, es- 
pecially due to its benefits, such as coherence and stochastic res- 
onances [5–8,10] . In coherence resonance the regularity of a noisy 
or a chaotic system maximizes at a certain value of a random 
or a chaotic force. When the force is random, it is referred to as 
stochastic coherence resonance [6,7,10] , while in a chaotic system it 
is called deterministic coherence resonance [11–13] . Coherence reso- 
nance can occur either in a bistable or an excitable system close to 

∗ Corresponding author. 
E-mail address: hramovae@gmail.com (A.E. Hramov). 

the excitation threshold. Stochastic resonance [5,8,14,15] is a partic- 
ular case of coherence resonance when a periodic signal is present. 
It is characterized by a maximum in the signal-to-noise ratio with 
respect to noise or chaos intensity. Stochastic resonance is always 
accompanied by coherence resonance. 

In a notable paper [5] , Simonotto et al. showed that noise im- 
proves perception when a visual stimulus is below the perception 
threshold. They interpreted this result as stochastic resonance in 
a nervous system. Although this work stimulated further research 
in this direction, including the present one, there are some uncer- 
tainties in this interpretation. First of all, the perception stimulus is 
not periodic. Therefore, in fact they deal with coherence resonance, 
but not with stochastic resonance. Second, the darkness of the im- 
age background (or fog) is not noise, it is rather associated with 
the perception threshold. So, you may ask: Where is the noise? 
Noise is in the brain. We may also suggest the brain adjusts in- 
trinsic noise to increase signal-to-noise ratio while receiving a very 
weak stimulus. However, this is only half of the story. 

In 2003, Toral et al. [10] found noise-induced coherence reso- 
nance in a network of FitzHung–Nagumo oscillators. They showed 
that the network coherence maximized at a certain network size. A 
similar size-dependent resonance effect was previously observed in 
an ensemble of coupled bistable noise-driven oscillators subjected 
to a periodic force [8] . The authors of the above papers suggested 
that not only noise, but also the network size can be adjusted to 
enhance the sensitivity of a neural system in signal recognition. 
It is not yet clear how the brain adjusts network size. We may 

https://doi.org/10.1016/j.chaos.2017.11.017 
0960-0779/© 2017 Elsevier Ltd. All rights reserved. 
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Abstract.

1. The model

Each neuron-like Rulkov element is described by the following system of equations

[Rulkov, N. F., Timofeev, I., Bazhenov, M. / Journal of computational neuroscience,

17 2 (2004) 203-223] with chemical coupling [D. Hu, H. Cao / Commun Nonlinear Sci

Numer Simulat 35 (2016) 105122]:

xn+1 = f(xn, xn�1, yn + �n), (1)

yn+1 = yn � µ(xn + 1) + µ� + µ�n + µA⇠⇠n, (2)

where x is a fast variable associated with membrane potential, y is a slow variable which

has some analogy with gating variables, the parameters ↵, � and 0 < µ  1 control

individual dynamics of the system, ⇠ is a Gaussian noise with a zero mean and standard

deviation that equals 1, A⇠ is noise amplitude. �n and �n are related to external stimuli,

f is a piecewise function defined as

f(xn, xn�1, yn) =

8
>><

>>:

↵/(1� xn) + yn, if xn  0

↵ + yn, if 0 < xn < ↵ + yn and xn�1  0

�1, if xn � ↵ + yn or xn�1 > 0

(3)

It is constructed in a way to reproduce di↵erent regimes of neuron-like activity, such as

spiking, bursting and silent regimes.

The parameters �n and �n is defined as

Coherent resonance in a neural network 2

�n = �eIextn + �synIsynn , (4)

�n = �eIextn + �synIsynn . (5)

Coe�cients �e and �e are used to balance the e↵ect of external current Iextn . �syn and

�syn are coe�cients of chemical synaptic coupling. Isynn is a synaptic current:

Isynn+1 = �Isynn � gsyn ⇤
(
(xpost

n � xrp)/(1 + exp(�k(xpost
n � ✓)), spikepre,

0, otherwise,
(6)

where gsyn is the strength of synaptic coupling, gsyn � 0, synaptic parameters ✓ =

�1.55 and k = 50 stand for the synaptic threshold behavior. Indexes pre and post

correspond presynaptic and postsynaptic variables respectively. The first condition in

(6) corresponds to the presynaptic impulse (spike) generation time moments and defined

as xpre
n � ↵ + ypren + �pre

n . Parameter � is a relaxation time of the synapse, 0  �  1.

It defines the part of synaptic current which preserve as in the next iteration. xrp is a

reversal potential that determines the type of the synapse: inhibitory or excitatory.

In our modeling we take values of the parameters ↵ = 3.65, � = 0.06 and µ = 0.0005

so that each neuron being autonomous demonstrates silent regime dynamics. Also we

assume �e = 0.133, �e = 1.0, �syn = 0.1, �syn = 0.5 and xrp = 0.0. On figure 1 we

can see the model of investigation system: motif of N neurons coupled to each other

with a random coupling strength gsyn and relaxation time �. The values of them are

randomly chosen from 0.0 to 0.1 and from 0.0 to 0.5 respectively. In the investigating

system we apply an external stimulus to Na neurons. Stimulus is an current impulse

of the following form: from the start it equals to 0, at the moment ts when we apply

it current starts equal to A. The value of variables are chosen so that without the

external stimulus each neuron is in a silent regime but with starting the application of

stimulus excited neurons start periodically generate spikes. From the all system we take

an macroscopic signal.

2. The analysis

The macroscopic signal taken from the system represents the time series of fast variable

x averaging over all neurons (figure 1). From that dependance we can see periodical

grouping. We analyse influence of such parameters as number of neurons in the system

N , number of exited neurons Na, amplitude of external stimulus A and amplitude of

internal noise A⇠. On figure 2 we can see time series of x variable averaging over all

neurons and and time series of x variable for all 50 neurons for di↵erent values of Na.

At the small and big values of Na we don’t see periodical grouping but for Na = 10 we

see that phenomenon not so clear. If we take system of 100 neurons at the same values

of Na (3) we still don’t see periodical grouping for small and big Na but for N = 10

e↵ect of grouping can be seen very clear.
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where n0 is the number of transition iterations, N - iteration number, C(⌧) is the

normalized autocorrelation function defined as

C(⌧) =
h(x(n)� hxi) (x(n+ ⌧)� hxi)i

h(x(n)� hxi)2i
, (8)

where x is the signal averaged over all neurons, hxi is the averaging aver time.

Standard deviation of average signal oscillation amplitude divided by average value

is defined as

S =

sPN
n0
(xn � hxi)2

N � n0
/hxi. (9)

 0

 400

 800

 1200

 0  5  10  15  20  25  Na

-0.18

-0.14

-0.10

-0.06

-0.02

 0

 400

 800

 1200

 1600

 20  60  100  140  180

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

τ c

 0  5  10  15  20  25  Na

N

 20  60  100  140  180 N

τ c
a

b

c

d
S S

Figure 11. The characteristic correlation time (a), (c) and standard deviation of

average signal oscillation amplitude divided by average value (b), (d) versus excited

neurons number and number of neurons in the system respectively. A⇠
= 0.1, A = 1.0,

for figures (a) and (c) N = 100, for (b) and (d) Na = 10.
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time and standard deviation of average signal oscillation amplitude divided by average

value. Characteristic correlation time is defined as [Arkady S. Pikovsky and Jürgen

Kurths / Coherence Resonance in a Noise-Driven Excitable System, 75, 5 (1997) 775-

778]

⌧c =
NX

n0

C(⌧)2, (7)
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N = 100 
A = 1

Ax = 0.1 

Na = 10 

N = 100 
Na = 10 



Hodgkin-Huxley neural network 
Stochastic model

Correlation time vs
external stimulus

max 3 max 4 max( ) ( ) ( )j ex syn
m Na j j j Na K j j K L j L j j

dV
C g m h V V g n V V g V V I I

dt
= - - - - - - + +

( )(1 ) ( ) ( ),
j j j

j
x j j x j j x

dx
V x V x t

dt
a b x= - - +



Experimental 
evidence

I = 0.1

I = 0.7 I = 0.8

I = 0.1

I = 0.4

I = 0.4

I = 0.7

Wavelet bicoherence

8-
12

 H
z

15
-3

0 
H

z



How to measure brain noise

Experimental methods
based on multistable perception:

• Delayed bifurcation
• Probabilitity distribution
• Phase synchronization



Multistable visual perception
Psychology, cognitive science, art

Ocampo Salvatore Dali



Hysteresis in visual perception

Hypothetic 
bifurcation 
diagram

Double-well 
potential



Multistability in audio perception



Delayed-bifurcationmethod



34

Necker cube Bifurcation diagram

Perception energy model

Psychological experiment



Critical slowing down

402 Biol Cybern (2014) 108:397–404

Table 2 Main characteristics evaluated from experimental data in Fig.
4a

Subject Intercept h0 SE Slope δ SE

3 −0.41 0.05 −0.27 0.08

4 −0.75 0.06 −0.12 0.10

8 −0.62 0.06 −0.29 0.10

13 −0.61 0.06 −0.24 0.10

Mean −0.60 0.14a −0.23 0.08a

SE means a standard error
a Standard deviation from the mean

internal brain noise got in resonance with the Kramers time
in the bistable system that facilitated intermittent switches
between the coexisting states in the Necker cube, thus enlarg-
ing the intermittency area. Such a behavior is not surpris-
ing. Early, stochastic resonance was observed in psycholog-
ical experiments (Chialvo and Apkarian 1993) with bistable
Haken’s images (Haken 1983). Furthermore, another kind
of stochastic resonance, subthreshold stochastic resonance,
was detected in visual perception (Simonotto et al. 1997).
The latter kind of stochastic resonance occurs in monostable
excitable systems near the threshold. Such a resonance
enhances recognition of obscured images when small noise
neurons are below the threshold of action activity.

3 Theory

Having the results as described above, we will now proceed
to construct a simple one-parameter theoretical model that is
nonlinear and stochastic. We consider the simplest double-
well potential model which exhibits the coexistence of two
fixed points, that is the double-well potential model. The
model is based on the assumption that each of two neuronal
populations (say A and B) represent a different interpretation
of the stimulus (cA and cB) (Moreno-Bote et al. 2007)

ẋ = −4x(x2 − 1) − 2cA(x − 1) − 2cB(x + 1) + αξ(t), (3)

where x is the state variable proportional to the difference
between the dimensionless firing rates of the two competing
populations, ξ(t) is zero mean Gaussian white noise, and
α is the noise intensity. Equation (3) is derived from the
energy function d E/dx = −τdx/dt describing perceptual
alternation dynamics, where the minima are located close to
x = ±1. In our simulations, for simplicity, the time scale
τ is set to 1. In our case, cA and cB are associated with the
wire contrasts responsible for different image interpretations.
Since in our experiments, we changed the contrasts of two
wireframes simultaneously in opposite directions (while one
was increasing the other was decreasing), we can use only
one-parameter c = cA = −cB that makes Eq. (3) more

simple:

ẋ = −4x(x2 − 1) + 4c + αξ(t), (4)

The important advantage of the theoretical consideration
over the experimental one is that in the theory, we can study
the behavior of the noiseless bistable system (α = 0), while
in experiments, it is impossible since internal brain noise is
not only inevitable but also very high because, as our exper-
iments show, the hysteresis in visual perception is always
negative (see Fig. 4).

Without noise (α = 0), the system Eq. (4) flows into one
of the stable states (depending on the initial condition) and
stays there forever. If the control parameter c is varied as

c = c0 ± vt (5)

with velocity v, the system passes through forward and back-
ward bifurcation points c f and cb, where the system changes
its attractor, as shown in the bifurcation diagram in Fig. 1.
The system state depends on both the initial condition c0
and the direction of the parameter change determined by the
sign in Eq. (5). The bistability is accompanied by hysteresis
h = c f − cb.

Due to critical slowing down, the position of bifurcation
points depends on the velocity of the parameter change, i.e.,
h enlarges when v increases. Such a behavior is illustrated in
Fig. 5a, b. Since the perception of one stimulus occurs when
the firing rate of its population is higher than that for another
population, the position of the bifurcation point is detected
at the moment when the variable x crosses zero.

While the increasing velocity enlarges h, the increasing
noise produces an opposite effect, i.e., hysteresis decreases
when noise increases. This effect is clearly seen in Fig. 5c.
For sufficiently strong noise, instead of bistability, two-state
intermittency takes place when the system intermittently
switches between two coexisting states. In this case, hys-
teresis is negative, as seen in Fig. 5d.

Figure 6 shows how the hysteresis range depends on the
noise intensity at different velocities of the parameter change.
Positive hysteresis (h > 0) indicates bistability and negative
hysteresis (h < 0) means two-state intermittency. Since in
our experiments hysteresis was negative, we concluded that
the internal brain noise was strong enough to induce intermit-
tent switches between coexisting percepts. The theoretical
noise dependences in a large range of the noise intensity are
well approximated by a sigmoidal fit. Nevertheless, within a
small range, a linear fit yields a rather good approximation
that is in agreement with our experimental results.

To compare the results of the numerical simulations with
our experiments, in Fig. 7, we plot the hysteresis value versus
inverse velocity v−1 for different noise intensities α. These
dependences are well approximated by exponential decay Eq.
(2), in good agreement with experimental results (see Fig. 3).
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Fig. 5 Bifurcation diagrams demonstrating a shift of bifurcations due
to critical slowing down when control parameter c is varied for a v =
0.18 and b v = 0.45 without noise and for c α = 18 and d α = 60 at
fixed velocity v = 0.01. While for weak noise the hysteresis is positive
(c), for strong noise it is negative (d)
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Fig. 6 Hysteresis as a function of noise for different velocities. The
dashed lines are sigmoidal fits

0 2 4 6 8 10 12 14 16 18

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

H
ys

te
re

si
s,

h

Run time, v-1

α = 0
α = 60
α = 100

Fig. 7 Theoretical dependences of hysteresis on the inverse velocity
of parameter change for different noise intensities. The dashed lines are
exponential fits

A good qualitative agreement between theoretical and
experimental results indicates that even such a simple model
allows simulation of brain cognitive dynamics. However,
our model cannot describe the nonmonotonous noise depen-
dences observed in the experiments. We expect that more
realistic models, such as, e.g., the Hodgkin–Huxley neuron
model with a stochastic term (Borisyuk et al. 2009) will allow
a more detailed description of the experimentally observed
features.

4 Conclusions

The phenomena of critical slowing down and noise-induced
two-state intermittency were studied in the bistable visual
perception of the Necker cube in order to estimate important
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Fig. 5 Bifurcation diagrams demonstrating a shift of bifurcations due
to critical slowing down when control parameter c is varied for a v =
0.18 and b v = 0.45 without noise and for c α = 18 and d α = 60 at
fixed velocity v = 0.01. While for weak noise the hysteresis is positive
(c), for strong noise it is negative (d)
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Fig. 6 Hysteresis as a function of noise for different velocities. The
dashed lines are sigmoidal fits
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Fig. 7 Theoretical dependences of hysteresis on the inverse velocity
of parameter change for different noise intensities. The dashed lines are
exponential fits

A good qualitative agreement between theoretical and
experimental results indicates that even such a simple model
allows simulation of brain cognitive dynamics. However,
our model cannot describe the nonmonotonous noise depen-
dences observed in the experiments. We expect that more
realistic models, such as, e.g., the Hodgkin–Huxley neuron
model with a stochastic term (Borisyuk et al. 2009) will allow
a more detailed description of the experimentally observed
features.

4 Conclusions

The phenomena of critical slowing down and noise-induced
two-state intermittency were studied in the bistable visual
perception of the Necker cube in order to estimate important
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Table 2 Main characteristics evaluated from experimental data in Fig.
4a

Subject Intercept h0 SE Slope δ SE

3 −0.41 0.05 −0.27 0.08

4 −0.75 0.06 −0.12 0.10

8 −0.62 0.06 −0.29 0.10

13 −0.61 0.06 −0.24 0.10

Mean −0.60 0.14a −0.23 0.08a

SE means a standard error
a Standard deviation from the mean

internal brain noise got in resonance with the Kramers time
in the bistable system that facilitated intermittent switches
between the coexisting states in the Necker cube, thus enlarg-
ing the intermittency area. Such a behavior is not surpris-
ing. Early, stochastic resonance was observed in psycholog-
ical experiments (Chialvo and Apkarian 1993) with bistable
Haken’s images (Haken 1983). Furthermore, another kind
of stochastic resonance, subthreshold stochastic resonance,
was detected in visual perception (Simonotto et al. 1997).
The latter kind of stochastic resonance occurs in monostable
excitable systems near the threshold. Such a resonance
enhances recognition of obscured images when small noise
neurons are below the threshold of action activity.

3 Theory

Having the results as described above, we will now proceed
to construct a simple one-parameter theoretical model that is
nonlinear and stochastic. We consider the simplest double-
well potential model which exhibits the coexistence of two
fixed points, that is the double-well potential model. The
model is based on the assumption that each of two neuronal
populations (say A and B) represent a different interpretation
of the stimulus (cA and cB) (Moreno-Bote et al. 2007)

ẋ = −4x(x2 − 1) − 2cA(x − 1) − 2cB(x + 1) + αξ(t), (3)

where x is the state variable proportional to the difference
between the dimensionless firing rates of the two competing
populations, ξ(t) is zero mean Gaussian white noise, and
α is the noise intensity. Equation (3) is derived from the
energy function d E/dx = −τdx/dt describing perceptual
alternation dynamics, where the minima are located close to
x = ±1. In our simulations, for simplicity, the time scale
τ is set to 1. In our case, cA and cB are associated with the
wire contrasts responsible for different image interpretations.
Since in our experiments, we changed the contrasts of two
wireframes simultaneously in opposite directions (while one
was increasing the other was decreasing), we can use only
one-parameter c = cA = −cB that makes Eq. (3) more

simple:

ẋ = −4x(x2 − 1) + 4c + αξ(t), (4)

The important advantage of the theoretical consideration
over the experimental one is that in the theory, we can study
the behavior of the noiseless bistable system (α = 0), while
in experiments, it is impossible since internal brain noise is
not only inevitable but also very high because, as our exper-
iments show, the hysteresis in visual perception is always
negative (see Fig. 4).

Without noise (α = 0), the system Eq. (4) flows into one
of the stable states (depending on the initial condition) and
stays there forever. If the control parameter c is varied as

c = c0 ± vt (5)

with velocity v, the system passes through forward and back-
ward bifurcation points c f and cb, where the system changes
its attractor, as shown in the bifurcation diagram in Fig. 1.
The system state depends on both the initial condition c0
and the direction of the parameter change determined by the
sign in Eq. (5). The bistability is accompanied by hysteresis
h = c f − cb.

Due to critical slowing down, the position of bifurcation
points depends on the velocity of the parameter change, i.e.,
h enlarges when v increases. Such a behavior is illustrated in
Fig. 5a, b. Since the perception of one stimulus occurs when
the firing rate of its population is higher than that for another
population, the position of the bifurcation point is detected
at the moment when the variable x crosses zero.

While the increasing velocity enlarges h, the increasing
noise produces an opposite effect, i.e., hysteresis decreases
when noise increases. This effect is clearly seen in Fig. 5c.
For sufficiently strong noise, instead of bistability, two-state
intermittency takes place when the system intermittently
switches between two coexisting states. In this case, hys-
teresis is negative, as seen in Fig. 5d.

Figure 6 shows how the hysteresis range depends on the
noise intensity at different velocities of the parameter change.
Positive hysteresis (h > 0) indicates bistability and negative
hysteresis (h < 0) means two-state intermittency. Since in
our experiments hysteresis was negative, we concluded that
the internal brain noise was strong enough to induce intermit-
tent switches between coexisting percepts. The theoretical
noise dependences in a large range of the noise intensity are
well approximated by a sigmoidal fit. Nevertheless, within a
small range, a linear fit yields a rather good approximation
that is in agreement with our experimental results.

To compare the results of the numerical simulations with
our experiments, in Fig. 7, we plot the hysteresis value versus
inverse velocity v−1 for different noise intensities α. These
dependences are well approximated by exponential decay Eq.
(2), in good agreement with experimental results (see Fig. 3).
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Fig. 5 Bifurcation diagrams demonstrating a shift of bifurcations due
to critical slowing down when control parameter c is varied for a v =
0.18 and b v = 0.45 without noise and for c α = 18 and d α = 60 at
fixed velocity v = 0.01. While for weak noise the hysteresis is positive
(c), for strong noise it is negative (d)
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Fig. 6 Hysteresis as a function of noise for different velocities. The
dashed lines are sigmoidal fits
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Fig. 7 Theoretical dependences of hysteresis on the inverse velocity
of parameter change for different noise intensities. The dashed lines are
exponential fits

A good qualitative agreement between theoretical and
experimental results indicates that even such a simple model
allows simulation of brain cognitive dynamics. However,
our model cannot describe the nonmonotonous noise depen-
dences observed in the experiments. We expect that more
realistic models, such as, e.g., the Hodgkin–Huxley neuron
model with a stochastic term (Borisyuk et al. 2009) will allow
a more detailed description of the experimentally observed
features.

4 Conclusions

The phenomena of critical slowing down and noise-induced
two-state intermittency were studied in the bistable visual
perception of the Necker cube in order to estimate important
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Fig. 5 Bifurcation diagrams demonstrating a shift of bifurcations due
to critical slowing down when control parameter c is varied for a v =
0.18 and b v = 0.45 without noise and for c α = 18 and d α = 60 at
fixed velocity v = 0.01. While for weak noise the hysteresis is positive
(c), for strong noise it is negative (d)
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Fig. 6 Hysteresis as a function of noise for different velocities. The
dashed lines are sigmoidal fits
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Fig. 7 Theoretical dependences of hysteresis on the inverse velocity
of parameter change for different noise intensities. The dashed lines are
exponential fits

A good qualitative agreement between theoretical and
experimental results indicates that even such a simple model
allows simulation of brain cognitive dynamics. However,
our model cannot describe the nonmonotonous noise depen-
dences observed in the experiments. We expect that more
realistic models, such as, e.g., the Hodgkin–Huxley neuron
model with a stochastic term (Borisyuk et al. 2009) will allow
a more detailed description of the experimentally observed
features.

4 Conclusions

The phenomena of critical slowing down and noise-induced
two-state intermittency were studied in the bistable visual
perception of the Necker cube in order to estimate important
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jects (3, 4, 5, 8, 13, 16, 18, 19) in the second series, due to
personal reasons. Only five subjects (3, 4, 5, 8, 13) took part of
both series of the experiments. The data of eight subjects (2,
4, 5, 6, 8, 11, 12, 15) participated in the first series and eight
subjects (3, 4, 5, 8, 13, 16, 18, 19) participated in the second
series were included in the analyses. The data of three sub-
jects (4, 5, 8) were used in the analyses of both series. Since
the analysis of each series was carried out independently, the
participation of the same subject in both experiments was
not necessary. To exclude a possible brain adaptation to the
cognitive task, the same test was not repeated for the same
subject.

In the following, we present the experimental results of
the two experimental series.

2.2 Experiments with white background

From fifteen students participated in this experimental series,
only the data of eight subjects were selected for further analy-
sis because of several reasons. The possible reasons were the
following: (i) a person did not well understand the task, for
instance, he/she pressed the key not at the moment of the first
switch in the percept, but when the intermittent switches dis-
appeared, and (ii) the loss of attention that could be caused by
personal problems, for example, the person illness, tiredness,
worrying or thinking about something else, etc. All these fac-
tors could result in a very high deviation from the average
and after revealing the subjective reasons the data of these
subjects were excluded from the analysis.

The onset of intermittency was measured for 14 different
velocities of the contrast variation in each direction, starting
from the longest run time T = 30 s (slow parameter vari-
ation) to the shortest run time of T = 4 s (fast parameter
variation) with the interval of 2 s. Figure 3 shows the nor-
malized hysteresis

h = (t f + tb − T )/T (1)

as a function of T .
For large run times, all subjects detected the first switch

in percept at times less than one half of the run time (t f ≈
tb ≤ T/2), that resulted in negative hysteresis in the inter-
mittent regime. As we expected, h saturates as the run time
T increases, i.e., when the velocity of the contrast variation
decreases; the faster the parameter change, the shorter the
hysteresis range. Such a behavior is a sequence of critical
slowing down near the saddle-node bifurcations. Although
this phenomenon was previously observed in many other sys-
tems with time-dependent parameters, this is the first, to the
best of our knowledge, experimental demonstration of criti-
cal slowing down in visual perception.
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Fig. 3 Experimental data for eight subjects viewing the Necker cube
with white background. The dashed lines are the exponential fits by
Eq. (2) demonstrating critical slowing down. The saturation at large run
times is determined by internal brain noise, and the slope is related to
the reaction time

The dependences in Fig. 3 are well approximated by an
exponential decay

h = k exp(−T/γ ) + hs, (2)

where k is the scaling coefficient, γ is the scaling exponent,
and hs is the saturation value. Since we assumed that noise
induces intermittent switches between the coexisting states,
the existence of the saturation in the rate-dependent hystere-
sis confirms our hypothesis that the hysteresis at saturation
hs is determined by brain noise. In other words, the higher
the brain noise, the larger the absolute value of hysteresis.

This simple experiment allowed not only measuring brain
noise, but also estimating the reaction time which is deter-
mined by the scaling exponent γ . Specifically, when the
contrast was changed too fast, the subjects did not have
enough time to react adequately to this change that resulted
in decreasing the hysteresis region.

The dynamical characteristics of eight subjects extracted
from the experimental dependences in Fig. 3 using the expo-
nential fitting Eq. (2) are summarized in Table 1. One can
see that hs varied from −0.57 to −0.92 with the mean value
−0.76 and the standard errors for all subjects are less than
15 %. The comparison of hs for different subjects provides
us with information about the difference in the relative levels
of personal brain noise. For example, we can conclude that
subject 6 had minimum and subject 11 had maximum brain
noise among all subjects in this group. The value γ allows
us to compare the reaction time of different participants. The
very big SD for mean γ (44 %) means that the reaction time
significantly varied across the individuals. Indeed, γ of sub-
ject 2 was approximately four times larger than γ of subject
12 (6.35 against 1.52), although in our experiments the error
in γ for subject 12 was very large (41 %).
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a b s t r a c t 
We propose a theoretical approach associated with an experimental technique to quantitatively charac- 
terize cognitive brain activity in the perception of ambiguous images. Based on the developed theoretical 
background and the obtained experimental data, we introduce the concept of effective noise intensity 
characterizing cognitive brain activity and propose the experimental technique for its measurement. The 
developed theory, using the methods of statistical physics, provides a solid experimentally approved basis 
for further understanding of brain functionality. The rather simple way to measure the proposed quanti- 
tative characteristic of the brain activity related to the interpretation of ambiguous images will hopefully 
become a powerful tool for physicists, physiologists and medics. Our theoretical and experimental find- 
ings are in excellent agreement with each other. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 
The brain is one of the most sophisticated and enigmatic ob- 

jects of comprehensive study attracting the burning interest of a 
broad scientific community [1–9] . Due to its immense importance 
and complexity, the brain research requires the combined efforts of 
scientists from diverse areas, including psychology, neurophysiol- 
ogy, medicine, physics, mathematics, and nonlinear dynamics. The 
multidisciplinary approach providing insight into the mysteries of 
the brain and a deeper understanding of mechanisms underlying 
its dynamics, opens promising opportunities for humanity with ap- 
plications in medicine and neurotechnology in the nearest future. 

The perception of ambiguous images [10,11] is just one very ex- 
citing task among an enormous number of open problems which 
appeared during recent intensive brain studies. Visual perception 
was often studied through perceptual alternations while observing 
ambiguous images [12–16] , although perceptual alternations were 
also described for other modalities [17–19] . In addition, this phe- 
nomenon is tightly connected with the problem of categorical per- 
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ception [20] (including non-human primates [21,22] ). Even though 
the underlying mechanism of image recognition is not yet well un- 
derstood, the metastable visual perception is known to involve a 
distributed network of occipital, parietal and frontal cortical areas 
[23,24] . The generally accepted concept that throws light on this 
phenomenon includes noise [25–28] inherent to neural brain cells 
activity originated from random neuron spikes [29] . 

Internal brain noise seems to play a crucial role in brain dy- 
namics related to the perception activity [25–27] and other brain 
functions [30–33] . Different manifestations of stochastic processes 
in the brain, including the perception of ambiguous images, were 
extensively studied in terms of simple stochastic processes like the 
Wiener process [34–37] from the viewpoint of statistical properties 
[26–28,38,39] . The development of methods for quantitative mea- 
surement of the brain’s stochastic properties can open up plenty 
of new opportunities for the study of the brain functionality and 
a diagnosis of brain pathologies. In the present work, we develop 
the quantitative theory and propose the experimental technique 
for measuring brain noise intensity related to the perception of 
ambiguous images. We carry out psychological experiments which 
confirm our theoretical findings and proposed methodological ap- 
proach. 

http://dx.doi.org/10.1016/j.chaos.2016.11.001 
0960-0779/© 2016 Elsevier Ltd. All rights reserved. 
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Fig. 1. Examples of distinct Necker cube images with different wireframe contrasts 
characterized by control parameter I . 

2. Experimental study description 
The experimental studies were performed in accordance with 

the ethical standards [40] and approved by the local research 
ethics committee of Saratov State Technical University. Twenty 
healthy subjects from a group of unpaid volunteers, male and fe- 
male, between the ages of 20 and 45 with a normal or corrected- 
to-normal visual acuity participated in the experiments. All per- 
sons have provided informed consent before participating in the 
experiment. As an ambiguous image, we used the Necker cube 
[41] . The contrast of the three middle lines centered in the left 
middle corner, I ∈ [0, 1], was used as a control parameter. The 
values I = 1 and I = 0 correspond, respectively, to 0 (black) and 
255 (white) pixels’ luminance of the middle lines, using the 8- 
bit grayscale palette for visual stimulus presentation. Therefore, we 
can define contrast parameter as I = y/ 255 where y is the bright- 
ness level of the middle lines in used 8-bit grayscale palette. The 
contrast of the three middle lines centered in the right middle cor- 
ner was set to (1 − I) , and the contrast of the six visible outer cube 
edges was fixed to 1. 

During the experiment N = 16 Necker cube images with dif- 
ferent wireframe contrasts, i.e. with different values of the con- 
trol parameter I ( Fig. 1 ), were repeatedly presented to a per- 
son in a random sequence; each cube drawn by black lines was 
placed in the middle of a computer screen on a white back- 
ground. All participants were well aware about the two possi- 
ble orientations of the Necker cube, and both orientations were 
seen by all of them. All participants were instructed to press ei- 
ther the left or the right key on the control panel according to 
their first visual impression (left-oriented cube ( Fig. 1 (a) or right- 
oriented cube ( Fig. 1 (e)). Both the image presentation and the 
recording of personal responses were accomplished with the help 
of Electroencephalograph-recorder Encephalan-EEGR-19/26 (Medi- 
com MTD). To demonstrate the grayscale stimulus we used a 24”
BenQ LCD monitor with the spatial resolution 1920 × 1080 pixels 
and refresh rate of 60 Hz. The subject was located at a distance 
of 70–80 cm from the monitor with visual angle approximately 
equal to 0.25 rad. The overall observation time of each experiment 
was 32 min, each Necker cube with the fixed control parameter I j 
( j = 1 , . . . , N) being shown randomly K = 47 times. In other words, 
during one experiment M = N × K = 752 stimuli were presented 
to the observer. The schematic representation of the experiment 
paradigm is given in Fig. 2 . 

The choice of the durations of stimuli presentations, τ i , as well 
as lengths of intervals between stimuli, s i (see Fig. 2 ), plays the 
important role. Since the stimuli are presented to the observer in- 
termittently, the effect of the stabilization of visual perception can 
take place [42] . The underlying mechanism of this stabilization ef- 
fect is not clear yet (although there are known some model-based 
approaches, see, e.g. [43] ), but obviously, that this effect consisting 
in persisting the visual perception between subsequent presenta- 
tions of two ambiguous images can potentially affect the results. 

Fig. 2. The schematic representation of the experiment paradigm. The white rect- 
angles correspond to the epochs with durations τ i ( τ i ∼ 0.5 ÷0.7 s, i = 1 , 2 , . . . , M). 
Within each epoch of the stimulus presentation the randomly selected Necker cube 
with one of the control parameter values I j ( j = 1 , . . . , N) is shown to the observer. 
Time intervals (with durations s i ∼ 1.5 ÷2.0 s when the different abstract pictures 
are demonstrated) between stimuli presentations are marked by dark rectangles. 
Two vertical dashed lines correspond to the start and finish of experiment, respec- 
tively. The total length of the experiment is 32 min when M = 752 times the Necker 
cube images are presented to the observer, with each of N Necker cubes (with the 
fixed control parameter value I j ) being shown exactly K = 47 times. 
Therefore, the durations τ i and s i should be chosen in such a way 
to avoid the stabilization effect. 

The mean duration of a visual percept is known to vary from 
one second to several minutes depending on each observer and 
stimulus conditions (e.g., [44] ), whereas the mean response times 
are rather consistent and vary only by a few hundred milliseconds 
(see, e.g. [45] ). The most common experimental length for each 
percept of the Necker cube was found to be approximately 1 s. 
[28] . Therefore, to fix the first impression of the person and avoid 
switches between two possible percepts the image exhibition was 
limited to τ ∼ 0.5 ÷0.7 s. This length of the stimuli presentation 
allows also reducing the stabilization effect [42] described above. 
Indeed, the probability of a configuration persisting until the sub- 
sequent presentation is known to be highly dependent on how 
long it was seen before the stimulus was removed [42] . Only when 
a perceptual configuration was seen consistently for the relatively 
long time before the stimulus disappearance, there is a high prob- 
ability that it would persist to the next stimulus presentation. For 
the Necker cube this required time of the consistent observation 
is known to be about 1 s [42] , and, therefore, taking the length of 
the stimulus exhibition τ below this value, we reduce the “mem- 
ory” effect. The random sequence of the Necker cubes with the 
different values of the control parameter, I (see Fig. 2 ), also pre- 
vents the appearance of the perception stabilization. Lastly, to draw 
away the observer’s attention and make the perception of the next 
Necker cube image independent of the previous one, the different 
abstract pictures were exhibited for about s ∼ 1.5 ÷2.0 s between 
subsequent demonstrations of different Necker cube images. 

For each value I j of the control parameter I the probability P l ( I j ) 
of the left-oriented cube (the left key choice) was calculated as 
P l (I j ) = l(I j ) 

l(I j ) + r(I j ) , (1) 
where l ( I j ) and r ( I j ) are the numbers of clicks on the left and right 
keys, respectively, for the j -th Necker cube with the value I j of the 
control parameter. 
3. Theoretical approach 

The probability of a subject to perceive the left-oriented image 
of the Necker cube P l ( I ) is, in fact, a psychometric function actively 
studied in psychophysics [46–48] . In the framework of classical ap- 
proach, different empirical functions (such as Cumulative, Normal, 
Logistic, Weibull, Gumbel, etc.) are used to model experimentally 
obtained psychometric functions, with control parameters (first of 
all, threshold and slope) fitted with the help of different methods, 
e.g., maximum likelihood criterion or Bayesian criterion [47,49] . Al- 
though such an approach allows the quantitative description of the 

202 A.E. Runnova et al. / Chaos, Solitons and Fractals 93 (2016) 201–206 

I

I=0 I=0.29 I=0.5 I=0.78 I=1

a b c d e

Fig. 1. Examples of distinct Necker cube images with different wireframe contrasts 
characterized by control parameter I . 

2. Experimental study description 
The experimental studies were performed in accordance with 

the ethical standards [40] and approved by the local research 
ethics committee of Saratov State Technical University. Twenty 
healthy subjects from a group of unpaid volunteers, male and fe- 
male, between the ages of 20 and 45 with a normal or corrected- 
to-normal visual acuity participated in the experiments. All per- 
sons have provided informed consent before participating in the 
experiment. As an ambiguous image, we used the Necker cube 
[41] . The contrast of the three middle lines centered in the left 
middle corner, I ∈ [0, 1], was used as a control parameter. The 
values I = 1 and I = 0 correspond, respectively, to 0 (black) and 
255 (white) pixels’ luminance of the middle lines, using the 8- 
bit grayscale palette for visual stimulus presentation. Therefore, we 
can define contrast parameter as I = y/ 255 where y is the bright- 
ness level of the middle lines in used 8-bit grayscale palette. The 
contrast of the three middle lines centered in the right middle cor- 
ner was set to (1 − I) , and the contrast of the six visible outer cube 
edges was fixed to 1. 

During the experiment N = 16 Necker cube images with dif- 
ferent wireframe contrasts, i.e. with different values of the con- 
trol parameter I ( Fig. 1 ), were repeatedly presented to a per- 
son in a random sequence; each cube drawn by black lines was 
placed in the middle of a computer screen on a white back- 
ground. All participants were well aware about the two possi- 
ble orientations of the Necker cube, and both orientations were 
seen by all of them. All participants were instructed to press ei- 
ther the left or the right key on the control panel according to 
their first visual impression (left-oriented cube ( Fig. 1 (a) or right- 
oriented cube ( Fig. 1 (e)). Both the image presentation and the 
recording of personal responses were accomplished with the help 
of Electroencephalograph-recorder Encephalan-EEGR-19/26 (Medi- 
com MTD). To demonstrate the grayscale stimulus we used a 24”
BenQ LCD monitor with the spatial resolution 1920 × 1080 pixels 
and refresh rate of 60 Hz. The subject was located at a distance 
of 70–80 cm from the monitor with visual angle approximately 
equal to 0.25 rad. The overall observation time of each experiment 
was 32 min, each Necker cube with the fixed control parameter I j 
( j = 1 , . . . , N) being shown randomly K = 47 times. In other words, 
during one experiment M = N × K = 752 stimuli were presented 
to the observer. The schematic representation of the experiment 
paradigm is given in Fig. 2 . 

The choice of the durations of stimuli presentations, τ i , as well 
as lengths of intervals between stimuli, s i (see Fig. 2 ), plays the 
important role. Since the stimuli are presented to the observer in- 
termittently, the effect of the stabilization of visual perception can 
take place [42] . The underlying mechanism of this stabilization ef- 
fect is not clear yet (although there are known some model-based 
approaches, see, e.g. [43] ), but obviously, that this effect consisting 
in persisting the visual perception between subsequent presenta- 
tions of two ambiguous images can potentially affect the results. 

Fig. 2. The schematic representation of the experiment paradigm. The white rect- 
angles correspond to the epochs with durations τ i ( τ i ∼ 0.5 ÷0.7 s, i = 1 , 2 , . . . , M). 
Within each epoch of the stimulus presentation the randomly selected Necker cube 
with one of the control parameter values I j ( j = 1 , . . . , N) is shown to the observer. 
Time intervals (with durations s i ∼ 1.5 ÷2.0 s when the different abstract pictures 
are demonstrated) between stimuli presentations are marked by dark rectangles. 
Two vertical dashed lines correspond to the start and finish of experiment, respec- 
tively. The total length of the experiment is 32 min when M = 752 times the Necker 
cube images are presented to the observer, with each of N Necker cubes (with the 
fixed control parameter value I j ) being shown exactly K = 47 times. 
Therefore, the durations τ i and s i should be chosen in such a way 
to avoid the stabilization effect. 

The mean duration of a visual percept is known to vary from 
one second to several minutes depending on each observer and 
stimulus conditions (e.g., [44] ), whereas the mean response times 
are rather consistent and vary only by a few hundred milliseconds 
(see, e.g. [45] ). The most common experimental length for each 
percept of the Necker cube was found to be approximately 1 s. 
[28] . Therefore, to fix the first impression of the person and avoid 
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allows also reducing the stabilization effect [42] described above. 
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the Necker cube this required time of the consistent observation 
is known to be about 1 s [42] , and, therefore, taking the length of 
the stimulus exhibition τ below this value, we reduce the “mem- 
ory” effect. The random sequence of the Necker cubes with the 
different values of the control parameter, I (see Fig. 2 ), also pre- 
vents the appearance of the perception stabilization. Lastly, to draw 
away the observer’s attention and make the perception of the next 
Necker cube image independent of the previous one, the different 
abstract pictures were exhibited for about s ∼ 1.5 ÷2.0 s between 
subsequent demonstrations of different Necker cube images. 
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Fig. 5. Experimentally measured dependencies of the probability to perceive the 
left-oriented image of the Necker cube P l ( !I ) on the asymmetry wireframe con- 
trasts parameter !I obtained for ten different subjects (dots) and corresponding 
theoretical approximations ˆ P l (!I) shown by the solid lines. The values of the effec- 
tive noise intensity D p related to the individual bistable perception energy function 
are determined with the help of the least square technique. All curves are ordered 
by increasing effective noise intensity D p : (a) subject #10, D p = 0 . 085 ; (b) subject 
#14, D p = 0 . 175 ; (c) subject #3, D p = 0 . 25 ; (d) subject #17, D p = 0 . 25 ; (e) subject 
#13, D p = 0 . 255 (see also Fig. 3 ); (f) subject #11, D p = 0 . 3 ; (g) subject #6, D p = 0 . 31 ; 
(h) subject #15, D p = 0 . 37 ; (i) subject #19, D p = 0 . 745 ; (j) subject #9, D p = 0 . 925 . 
tive noise intensity D p given in Table 1 has been measured using 
the least square approach. We have found that the effective noise 
intensity D p varies from 0.085 to 0.925 with the mean value being 
0.317, the standard deviation is 0.201, and the standard error of 
the mean is 0.045. Remarkably, the values of E min characterizing 
the deviation of the experimental points P l ( !I ) from the theoret- 
ical approximation ˆ P l (!I) are located within the interval 0.003 ≤
E min ≤ 0.093 with the mean value of 0.042, standard deviation of 
0.025, and standard error of the mean of 0.006. 

The excellent agreement between the theoretical curves and the 
experimentally obtained data is the conclusive evidence of the cor- 
rectness of the proposed approach aimed to quantitatively char- 
acterize the processes of the cognitive activity related to the vi- 
sual perception of ambiguous images. The revealed regularity Eq. 
(22) is extremely important from the viewpoint of both the un- 
derstanding of the brain functionality and the noise intensity mea- 
surement. The empirical character of regularity Eq. (22) in no way 
reduces the value of the obtained finding because absolutely all 
theories accepted today (whether in astronomy, physics, biology or 
elsewhere) are based on the preceded empirical observations. Re- 
markably, the examined type of the brain activity can be quantita- 
tively characterized with the help of a single quantity, namely, the 
intensity of effective noise, D p , despite individual particularities of 

the human perception mechanism, as well as the lack of informa- 
tion about numerical parameters responsible for recognition of vi- 
sual stimuli. 
5. Conclusion 

In this paper we have proposed a method for theoretical and 
experimental studies of stochastic processes in the human brain 
related to the perception of ambiguous images. Although all of our 
experiments have been performed in the morning with healthy 
persons, it would be very interesting to study the influence of 
different factors (e.g., tiredness, external disturbance, etc.) on the 
level of brain noise. Moreover, a study of stochastic processes in 
the brain of persons with cognitive difficulties and the use of the 
proposed technique for diagnostic and prognostic purposes seems 
to be an extremely important task. Obviously, the above problems 
require additional careful investigation. 

We believe that the developed theoretical background and pro- 
posed experimental methodology will stimulate further research of 
cognitive brain activity involving theoreticians and experimental- 
ists from different fields of science. The developed theory provides 
a solid experimentally approved basis for further understanding of 
brain functionality. This rather simple way to quantitatively char- 
acterize brain activity related to perception of ambiguous images 
will be a powerful tool, which could be used, e.g., in neurotech- 
nology to design a brain-computer interface, and in medicine for 
diagnostic and prognostic purposes. We expect that our work will 
be interesting and useful for scientists who carry out interdisci- 
plinary research at the cutting edge of physics, neurophysiology, 
psychology and medicine. 
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cube images are presented to the observer, with each of N Necker cubes (with the 
fixed control parameter value I j ) being shown exactly K = 47 times. 
Therefore, the durations τ i and s i should be chosen in such a way 
to avoid the stabilization effect. 

The mean duration of a visual percept is known to vary from 
one second to several minutes depending on each observer and 
stimulus conditions (e.g., [44] ), whereas the mean response times 
are rather consistent and vary only by a few hundred milliseconds 
(see, e.g. [45] ). The most common experimental length for each 
percept of the Necker cube was found to be approximately 1 s. 
[28] . Therefore, to fix the first impression of the person and avoid 
switches between two possible percepts the image exhibition was 
limited to τ ∼ 0.5 ÷0.7 s. This length of the stimuli presentation 
allows also reducing the stabilization effect [42] described above. 
Indeed, the probability of a configuration persisting until the sub- 
sequent presentation is known to be highly dependent on how 
long it was seen before the stimulus was removed [42] . Only when 
a perceptual configuration was seen consistently for the relatively 
long time before the stimulus disappearance, there is a high prob- 
ability that it would persist to the next stimulus presentation. For 
the Necker cube this required time of the consistent observation 
is known to be about 1 s [42] , and, therefore, taking the length of 
the stimulus exhibition τ below this value, we reduce the “mem- 
ory” effect. The random sequence of the Necker cubes with the 
different values of the control parameter, I (see Fig. 2 ), also pre- 
vents the appearance of the perception stabilization. Lastly, to draw 
away the observer’s attention and make the perception of the next 
Necker cube image independent of the previous one, the different 
abstract pictures were exhibited for about s ∼ 1.5 ÷2.0 s between 
subsequent demonstrations of different Necker cube images. 

For each value I j of the control parameter I the probability P l ( I j ) 
of the left-oriented cube (the left key choice) was calculated as 
P l (I j ) = l(I j ) 

l(I j ) + r(I j ) , (1) 
where l ( I j ) and r ( I j ) are the numbers of clicks on the left and right 
keys, respectively, for the j -th Necker cube with the value I j of the 
control parameter. 
3. Theoretical approach 

The probability of a subject to perceive the left-oriented image 
of the Necker cube P l ( I ) is, in fact, a psychometric function actively 
studied in psychophysics [46–48] . In the framework of classical ap- 
proach, different empirical functions (such as Cumulative, Normal, 
Logistic, Weibull, Gumbel, etc.) are used to model experimentally 
obtained psychometric functions, with control parameters (first of 
all, threshold and slope) fitted with the help of different methods, 
e.g., maximum likelihood criterion or Bayesian criterion [47,49] . Al- 
though such an approach allows the quantitative description of the 

where l(Ij) and r(Ij) are the
numbers of clicks of left and 
right keys for the j-th Necker
cube with control parameter Ij
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a b s t r a c t 
We consider the brain as an autonomous stochastic system, whose fundamental frequencies are locked to 
an external periodic stimulation. Taking into account that phase synchronization between brain response 
and stimulating signal is affected by noise, we propose a novel method for experimental estimation of 
brain noise by analyzing neurophysiological activity during perception of flickering visual stimuli. Using 
magnetoencephalography (MEG) we evaluate steady-state visual evoked fields (SSVEF) in the occipital 
cortex when subjects observe a square image with modulated brightness. Then, we calculate the prob- 
ability distribution of the SSVEF phase fluctuations and compute its kurtosis. The higher kurtosis, the 
better the phase synchronization. Since kurtosis characterizes the distribution’s sharpness, we associate 
inverse kurtosis with brain noise which broadens this distribution. We found that the majority of subjects 
exhibited leptokurtic kurtosis ( K > 3) with tails approaching zero more slowly than Gaussian. The results 
of this work may be useful for the development of efficient and accurate brain-computer interfaces to be 
adapted to individual features of every subject in accordance with his/her brain noise. 

© 2019 The Author(s). Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 
All natural systems are noisy and the brain is not an exception. 

Inherent brain noise as known to play an important role in the 
nervous system. It is needed for good functionality of the brain in 
all levels of its organization, from neuron cells to the neural net- 
work, e.g., for signal detection and decision-making by preventing 
deadlocks, underlying important mechanisms of its functionality 
and self-organization [1–3] . Inherent brain noise is known to play 
an important role in brain dynamics related to perception activity 
[4–6] and other brain functions [7–10] . Different manif estations of 
brain noise were extensively studied in terms of simple stochastic 
processes, like the Wiener process [11–13] from the viewpoint of 
statistical properties [5,6,14] . 

The sources of brain noise can lie in random fluctuations of 
physiological parameters and attention. While the former arises 
in the neuronal network due to quasi-random release of neu- 
rotransmitters by synapses, random synaptic input from other 
neurons, random switching of ion channels, etc. [15,16] , the lat- 
ter is associated with random fluctuations of subject’s attention 
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across trials, resulting in the variability of neuronal responses to 
identical stimulation [17–20] . The variability of the attentional 
state decreases as the strength of attention increases, i.e., attention 
suppresses inherent brain noise [21,22] . 

Many physicists and neurophysiologists highlighted positive 
effects of brain noise in image recognition and decision making, 
such as coherence resonance [7,23–27] and deadlocks preven- 
tion [1–3,28] . The former effect consists in the enhancing brain 
response to a weak stimulus, so that it becomes distinguishable, 
even when the stimulating signal is below the perception thresh- 
old [7,23] , while the latter takes place in a multistable system, 
including a brain, where noise induces multistate intermittency, 
thus preventing deadlocks [2,7,28–33] . 

The existing experimental approaches for brain noise esti- 
mation are based on theoretical models of bistable perception 
[2,3] . One of the methods [2] implies the variation of a control 
parameter near the onset of bistability and the measurement of 
the hysteresis when the parameter increases and decreases. In the 
psychological experiment [2] , the Necker cube with time-varied 
contrast of their inner edges was presented to a subject, who 
had to fix the moment of time when he/she interpreted the cube 
as left- or right-oriented. The hysteresis in the registered times 
when the contrast was increased and when it was decreased, was 
associated with the subject’s brain noise. In another approach [3] , 
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Frequencies: 60/7 = 6.67 Hz
60/9 = 8.57 Hz

Shapes: sinusoidal, rectangular
Modulation depth: 100%
Stimulus duration: 120 s
Time between: 30 s
Subjects: 13 subjects 

20–64 years old
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Brain noise and attention
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Higher attention requires a larger neuronal network to 
process information and make a decision, 

and hence brain noise is stronger
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Classifying the Perceptual
Interpretations of a Bistable Image
Using EEG and Artificial Neural
Networks
Alexander E. Hramov1, 2*, Vladimir A. Maksimenko1, Svetlana V. Pchelintseva 1,
Anastasiya E. Runnova1, Vadim V. Grubov 1, Vyacheslav Yu. Musatov 1,
Maksim O. Zhuravlev 1, 2, Alexey A. Koronovskii 1, 2 and Alexander N. Pisarchik 1, 3*

1 REC “Artificial Intelligence Systems and Neurotechnology”, Yuri Gagarin State Technical University of Saratov, Saratov,

Russia, 2 Faculty of Nonlinear Processes, Saratov State University, Saratov, Russia, 3 Center for Biomedical Technology,

Technical University of Madrid, Madrid, Spain

In order to classify different human brain states related to visual perception of ambiguous

images, we use an artificial neural network (ANN) to analyze multichannel EEG. The

classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in

classifying EEG patterns corresponding to two different interpretations of the Necker

cube. The important feature of our classifier is that trained on one subject it can be used

for the classification of EEG traces of other subjects. This result suggests the existence

of common features in the EEG structure associated with distinct interpretations of

bistable objects. We firmly believe that the significance of our results is not limited to

visual perception of the Necker cube images; the proposed experimental approach and

developed computational technique based on ANN can also be applied to study and

classify different brain states using neurophysiological data recordings. This may give

new directions for future research in the field of cognitive and pathological brain activity,

and for the development of brain-computer interfaces.

Keywords: brain, ambiguous image, multistability, EEG, artificial neuronal network, brain states recognition

1. INTRODUCTION

The brain is likely the most convoluted and enigmatic research object, attracting the burning
interest of the broad scientific community in diverse areas of science and technology, including
neurophysiology, medicine, engineering, physics, and mathematics (Wolf, 2005; Bick and
Rabinovich, 2009; Chavez et al., 2010; van Luijtelaar et al., 2011; Bear et al., 2015; Hramov et al.,
2015). One of the important problems in the field of brain research is the cognitive brain function
during visual perception. For a long time, this problem has attracted a lot of attention of various
researchers, especially in connection with such important tasks as object recognition (Martin, 2007;
Müler et al., 2008; Simanova et al., 2010; Isik et al., 2014) and decisionmaking (Heekeren et al., 2008;
Wang, 2008, 2012). Nowadays, these tasks are of great practical importance for the development of
novel communication, computer technologies, and robotics.

Visual perception, object recognition, and decision-making processes in human brain are often
studied with the help of ambiguous visual stimuli, also known as bistable or multistable) images

NEUROPHYSIOLOGICAL EXPERIMENT
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1st part: with key pressing

2nd part: without key pressing 

400 cubes randomly presented for T = 0.8 – 1.3 s 
and abstract pictures in between for S = 2 – 3 s 
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MLP architecture (MEG)

We used 15 unique stimuli, for which the value of the contrast parameter of the 
internal edges was randomly chosen from the set I = (0.1, 0.15, 0.3, 0.4, 0.47, 0.48, 
0.49, 0.5, 0.51, 0.52, 0.53, 0.6, 0.7, 0.85, 0.9). Each contrast was presented 15 
times  for a short period.



MLP response to MEG trials Statistical characteristics



Applications
The results can help in understanding pathological brain stability states, such as 
schizophrenia and obsessive-compulsive disorder. These states with a weak stability
may result from very weak brain noise. 

Instead, a very stable state may contribute to the attention deficit hyperactivity disorder 
(ADHD) due to very strong brain noise. 

Large deviations of the cognition reaction time from its mean value can indicate on 
serious brain diseases, such as delayed response syndrome or reactive attachment 
disorder. 

The results provide new promising applications of artificial neural networks that aim to 
quantitatively describe the decision-making process in different intelligent systems. 

The results can also be demanded for the development of new generation of brain-
computer interfaces enable to control and enhance human ability to make difficult 
decisions in stressful conditions.
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