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Brain neural network: network of networks
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Human brain contains approx
86 billions of neural cells
(nodes). The neurons receive

- electrochemical signals from

. dendrites and transmit them

' . through axons. Each neuron has
approx. 10000 synapses (links).
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Why brain noise is

important

Stochastic brain activity
underlies important
mechanisms of brain
functionality and self-
organization. It plays
important advantageous role
in signal detection and
decision-making by
preventing deadlocks.



¢ Human Brain Mapping 29:810-817 (2008) ¢
fMRI study reflects hemodynamic

REVIEW ARTICLE alterations related to brain functions

Endogenous Brain Fluctuations and
Diagnostic Imaging
o e e ok
Vesa Kiviniemi Blood oxygen level
Department of Diagnostic Radiology, University of Oulu, Oulu, Finland ﬂepcndent (BOLD) contrast '
. . vissbased on-detecting
changes in local

Abstract: Much of the rising health care costs in aging populations can be attributed to congenital disease

and psychiatric and neurologic disorders. Early detection of changes related to these diseases can promote deOthemO globln con-
the development of new therapeutic strategies and effective treatments. Changes in tissue, such as dam- g
age resulting from continued functional abnormality, often exhibit a time-delay before detection is possi- centration that Correl ates

ble. Methods for detecting functional alterations in endogenous brain fluctuations allow for an early diag-
nosis before tissue damage occurs, enabling early treatment and a more likely positive outcome. A litera-
ture review and comprehensive overview of the current state of knowledge about endogenous brain

with local field potentials

fluctuations is presented here. Recent findings of the association between various pathological conditions and mlﬂtlunlt aCthlty ln
and endogenous fluctuations are discussed. A particular emphasis is placed on research showing the rela-

tionship between clinical measures and pathological findings to the dynamics of endogenous fluctuations brain cortex

of the brain. Recent discoveries of methods for detecting abnormal functional connectivity are discussed

and future research directions explored. Hum Brain Mapp 29:810-817, 2008.  ©2008 Wiley-Liss, Inc.

MREG time series BOLD gime course of a single
vgxel n visual cortex

iy C
TR TRCE '
|

L

Visual Visual

. . : . 10s
stimulation stimulation




J Physiol 564.1 (2005) pp 145-160

Subthreshold voltage noise of rat neocortical
pyramidal neurones

Gilad A. Jacobson'2, Kamran Diba?, Anat Yaron-Jakoubovitch!?, Yasmin Oz', Christof Koch?,
Idan Segev!:? and Yosef Yarom'+?

! Department of Neurobiology and *The Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem 91904, Israel
’ Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA

Neuronesare noisy elements. Noise arises from both intrinsicand extrinsic sources, and manifests
itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a
neurone’s output but have also been suggested to play a computational role. We present a
y of the amplitude and spectrum of voltage noise recorded at the soma of layer
1w idal neurones in slices taken from rat neocortex. The dependence of the noise

»otential, synaptic activity and Na* conductance is systematically analysed. We

;QA"VW that voltage noise increases non-linearly as the cell depolarizes (from a standard
D.) of 0.19 mV at —75mV to an s.D. of 0.54 mV at —55mV). The increase in
is accompanied by an increase in the cell impedance, due to voltage dependence

Power

Amplitude

Time white noise Frequency (log scale) uctance. The impedance increase accounts for the majority (70%) of the voltage
(@) () e. The increase in voltage noise and impedance is restricted to the low-frequency
Hz). At the high frequency range (5-100 Hz) the voltage noise is dominated by
. 1if 7ity. In our slice preparation, synaptic noise has little effect on the cell impedance.
3 B odel reproduces qualitatively these data. Our results imply that ion channel noise
2 é ignificantly to membrane voltage fluctuations at the subthreshold voltage range,
< conductance plays a key role in determining the amplitude of this noise by acting
lependent amplifier of low-frequency transients.
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Human Decision Making Based on Variations in Internal
Noise: An EEG Study

Sygal Amitay’, Jeanne Guiraud™, Ediz Sohoglu®™, Oliver Zobay, Barrie A. Edmonds, Yu-Xuan Zhang,
David R. Moore™

Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom 20 1 3

Abstract

judgments.

ERP

Cz

Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling
studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of
bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making
when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG)
activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant,
bottom-up and top-down influences were under experimental control. We found that early cortical responses to the
identical stimuli varied in global field power and topography according to the perceptual decision made, and activity
preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that
activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination
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Noise-induced differences in internal representation of phySically
identical stimuli are treated by the brain in the same way as
differences in physical stimuli.
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Abstract

‘Heuristic’ theories of autism postulate that a single mechanism or process underpins the diverse psychological features
of autism spectrum disorder. Although no such theory can offer a comprehensive account, the parsimonious descriptions
they provide are powerful catalysts to autism research. One recent proposal holds that ‘noisy’ neuronal signalling explains
not only some deficits in autism spectrum disorder, but also some superior abilities, due to ‘stochastic resonance’.
Here, we discuss three distinct actions of noise in neural networks, arguing in each case that autism spectrum disorder
symptoms reflect too little, rather than too much, neural noise. Such reduced noise, perhaps a function of atypical
brainstem activation, would enhance detection and discrimination in autism spectrum disorder but at significant cost,
foregoing the widespread benefits of noise in neural networks.

Psychiatry and Clinical Neurosciences 2014; 68: 206-215 do0i:10.1111/pcn.12120
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Structural correlates of cognitive deficit and elevated gamma
noise power in schizophrenia

Vanessa Suazo, Msc,"”* Alvaro Diez, php,>*¢ Carlos Montes, Msc** and

Vicente Molina, MD, PhD!?>*

'Neuroscience Institute of Castilla y Leon, *Basic Psychology, Psychobiology and Methodology Department, School of
Psychology, University of Salamanca, >Biomedical Research Institute of Salamanca, *Radiophysics Service, University
Hospital of Salamanca, Salamanca, *Psychiatry Service, University Hospital of Valladolid, University of Valladolid,
Valladolid, Spain, and *Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, London, UK
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Single neuron

VOLUME 78, NUMBER 5 PHYSICAL REVIEW LETTERS 3 FEBRUARY 1997

Coherence Resonance in a Noise-Driven Excitable System

Arkady S. Pikovsky* and Jiirgen Kurths*

Max—Planck—Arbeitsgruppe “Nichtlineare Dynamik” an der Universitit Potsdam Am Neuen Palais 19, PF 601553, D-14415,

Potsdam, Germany
(Received 9 August 1996)

We study the dynamics of the excitable Fitz Hugh—Nagumo system under external noisy driving.
Noise activates the system producing a sequence of pulses. The coherence of these noise-induced
oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence
resonance is explained by different noise dependencies of the activation and the excursion times.
A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative
description of this phenomenon. [S0031-9007(97)02349-1]

PACS numbers: 05.40.+j, 05.20.—y Titz ﬂugﬁ_wagumo mOd-e[
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Neural networ@ electrical coupling

System size coherence resonance

in coupled FitzHugh-Nagumo models Collective variables:

R. ToraL™?, C. R. MirAssO! and J. D. GUNTON?Z3

L Departament de Fisica, Universitat de les Illes Balears

E-07071 Palma de Mallorca, Spain

2 Instituto Mediterrdneo de Estudios Avanzados (IMEDEA), CSIC-UIB
E-07071 Palma de Mallorca, Spain

3 Department of Physics, Lehigh University - Bethlehem, PA 18015, USA(*)

1t 1 1t
of \ t 0 N=1000
-1t 1 -t

0 20 40 60 80 100 20 40 60 80 100
t

1 1 1 1 0.2 1 1 1 1
1 10 100 1000 1 10 100 1000
N N

The coherence resonance has also been detected in other neuron models:
Morris—Lecar [Wang M S, Hou Z H, Xin H W 2006 Chin. Phys. 15 2553]

Hodgkin—Huxley [Lee S G, Neiman A, Kim S 1998 Phys. Rev. E 57 3292]
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Visual Perception of Stochastic Resonance

Enrico Simonotto,!> Massimo Riani,! Charles Seife,>* Mark Roberts,? Jennifer Twitty,3 and Frank Moss>
VINFM-Unitd di Genova and Dipartimento di Fisica, Universitd di Genova, 16146 Genova, Italy
>The Economist, 25 St. James’s Street, London, SWIA 1HG, England

3Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121
(Received 31 October 1996)
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Chaos, Solitons and Fractals 106 (2018) 80-85
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Coherence resonance in stimulated neuronal network @CmssMark

Andrey V. Andreev?, Vladimir V. Makarov?, Anastasija E. Runnova?,
Alexander N. Pisarchik®P, Alexander E. Hramov *¢*

3Yuri Gagarin State Technical University of Saratov, Politechnicheskaya, 77, Saratov 410054, Russia
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Model of a neural network based.on coupled Rulkov maps

Ln+l = f(xna Tn—1,Yn + B’n)?
Ynt1 = Yn — W(Tn + 1) + po + po, + NAggna

where x is a fast variable associated with membrane potential, y is a slow variable which
has some analogy with gating variables, the parameters o, ¢ and 0 < p < 1 control
individual dynamics of the system, ¢ is a Gaussian noise with a zero mean and standard
deviation that equals 1, A¢ is noise amplitude. f3,, and o,, are related to external stimuli,

f is a piecewise function defined as

roz/(l — Zp) + Yn, ifx, <O
f(Tns Tno1,Yn) = § @+ Y, if0<z,<a+y,and x, 1 <0 (3)

\—1, ifx, >a+y,orxz,1>0

Bn — ﬁelgajt ° ﬁsynlflyn7
Op — O'elswt + Usyn];slyn- (5)

Coefficients 3¢ and ¢¢ are used to balance the effect of external current I¢**. 5" and
o%¥" are coefficients of chemical synaptic coupling. I°Y" is a synaptic current:

(xPost — 2,) /(1 + exp(—k(aP>* — 0)), spikeP",

otherwise,

(6)




Coherence resonance with respect to.the

e number of excited neurons
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Signal-to-noise ratio versus the number-of
stimulated neurons
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SCIENTIFIC Hodgkin-Huxle mnetwork
REPORTS Stochastic model

natureresearch
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distributed cortical network during

sensory information processing

Alexander N. Pisarchik ()%, Vladimir A. Maksimenko®, Andrey V. Andreev()?,
Nikita S. Frolov?, Vladimir V. Makarov?, Maxim O. Zhuravlev*, Anastasija E. Runnova® &
Alexander E. Hramov (5"

dx.
—F=a, (=x)= B, (V)x,+&, (),

9.3 mA 11.4 mA
Neuronal brain network is a distributed computing system, whose architecture is dynamically adjusted

to provide optimal performance of sensory processing. A small amount of visual inform ation needed
effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual PDF

task which requires sustained attention to process a large amount of sensory information, involves a V.mV VomV
45 0.8
0.6
35 0.4
0.2
. 0.0

set of long-distance connections between parietal and fronta areas coordinating the activity of these
distant brain regions. We demonstrate that while neural interactions result in coherence, the strongest
connection is achieved through coherence resonance induced by adjusting intrinsic brain noise.
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Multistability in audio perception

B.H. Repp | Cognition 102 (2007) 434-454




Critical slowing down and noise-induced
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bifurcation analysis
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Psychological experiment

Bifurcation diagram
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306-channel (102 magnetometers and 204 planar gradiometers) Vectoiew MG
system (Elekta AB, Stockholm, Sweden) in the magnetically shielded room. 18
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Brain noise estimation from MEG response to flickering visual N
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ABSTRACT

We consider the brain as an autonomous stochastic system, whose fundamental frequencies are locked to
an external periodic stimulation. Taking into account that phase synchronization between brain response
and stimulating signal is affected by noise, we propose a novel method for experimental estimation of
brain noise by analyzing neurophysiological activity during perception of flickering visual stimuli. Using
magnetoencephalography (MEG) we evaluate steady-state visual evoked fields (SSVEF) in the occipital
cortex when subjects observe a square image with modulated brightness. Then, we calculate the prob-
ability distribution of the SSVEF phase fluctuations and compute its kurtosis. The higher kurtosis, the
better the phase synchronization. Since kurtosis characterizes the distribution’s sharpness, we associate
inverse kurtosis with brain noise which broadens this distribution. We found that the majority of subjects
exhibited leptokurtic kurtosis (K> 3) with tails approaching zero more slowly than Gaussian. The results
of this work may be useful for the development of efficient and accurate brain-computer interfaces to be
adapted to individual features of every subject in accordance with his/her brain noise.

© 2019 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)




Frequencies: 60/7 = 6.67 Hz

60/9 =8.57 Hz
Shapes: sinusoidal, rectangular
Modulation depth: 100%
Stimulus duration: 120 s
Time between: 30 s
Subjects: 13 subjects

20—64 years old




Visual evoked field (VEE)
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Power spectra of SSVEE
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Double-frequency flickering
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Higher attention requires a larger neuronal network to
process information and make a decision,
and hence brain noise is stronger
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600 s

15t part: with l%y pressing T

Pressing left/right button on joystick depending

on the perception of the cube

O

600 s
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2nd part: without key pressing

The question about the interpretation of the cube

400 cubes randomly presented for 7=0.8 — 1.3 s
and abstract pictures in between for S =2 -3 s




Typical EEGitrials -
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1.0.»>0.5 is left-oriented cube

0.5

W ¥<0.5 is right-oriented cube
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w;(t) = F > wpiuy, (L) —0;
p=1

where H' is the number of neurons in the /-th layer (a layer with I = 0 is supposed to be the input layer),
u';'-(_l ) is the output signal of the i-th neuron belonging to the I-th layer (u} (1) being the signals from analyzed
EEG channels), W' — {w } is the weight matrix of the I-th layer of dimension (F'~* x H'), and us,
p=1..., HY Y i=1,.. ., H') are the synaptic weights of input signals for the i-th neuron in the I/-th
layer, ®' = {60!} is the threshold vector for neurons in the I-th layer, and
F(n) = f(n) = ; (6)
o 1 + exp(—n)

is the nonlinear logistic activation function for neurons in the hidden and output layers [ = 1, 2, 3.
A class of recognized objects can be characterized by the mean squared value of output signal (1)
ui(t), as follows




~Recognition accuracy of ANN_

= trained with own EEG
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Left: with key pressing
Right: wthout key pressing



Recognition accuracy of ANN_
= trained with EEG of subject 4
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MLP response to MEG trials Statistical characteristics
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