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Fermi-Pasta-Ulam-Tsingou lattice: an example of
computational nonlinear physics

Los Alamos report (1955): Study of a relaxation from an initially

non-equilibrium state to a thermodynamic equilibrium — check for
equipartition and ergodicity
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Fig. 1. - The quantity plo(::d is u e energy (kinetic plus potential in each of the first five
modes). The units for energy a

arbitrary. N =32; @=1/4; 8 = 1/8. The initial form
of the string was a single sine wave. The higher modes never exceeded in energy 20 of our

units. About 30,000 computation cycles were calculated.

36



Weakly nonlinear lattices

_ 2
o Z W2 q/ K(Ql-ﬁ-l2q/) + Un(qr) + Vai(gqi+1 — q1)

» Examples: Fermi-Pasta-Ulam lattice, nonlinear Klein-Gordon
lattice, etc

» Small perturbations: sound waves / phonons

» Large perturbations: nonlinearly interacting sound waves /
interacting gas of phonons
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Nonequilibrium settings

» FPUT problem: equilibration in Fourier space: from one
several modes to equipartition

» Equilibration in real space: from a localized perturbations on
top of vacuum: dominated by spreading with sound velocity

» Slightly non-equilibrium state at constant density: Thermal
conductivity paradox [see Lepri, Livi, and Politi, Thermal
conduction in classical low-dimensional lattices, Physics
Reports, v. 377 (2003)]

» Perturbations on top of finite phonon density: concepts of first
and second sound on top of an underground turbulent/chaotic
state as density and temperature modes in the “phonon gas”
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Disordered weakly nonlinear lattices

A way to prohibit linear waves: introduce disorder

2 2 2
1% q di+1 — q
H = E ?/ —|—w,2?’ +/€/(+2) + Unl(q/) + Vn|(q/+1 - q/)

wy, k. random quenched disorder
» Anderson localization: exponentially localized linear modes
instead of propagating phonons
» Large perturbation: interacting localized modes

» Localized perturbations on top of vacuum: weak sub-diffusive
spreading due to nonlinear interaction of localized modes
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Strongly nonlinear lattices - sonic vacuum

Strongly nonlinear lattice: no linear coupling terms
q?
H = Z w? l + Un(aqr) + Va(gi+1 — 1)

» No phonons, no linear propagating waves and modes (like in
Anderson localization, localization length = 1)

» The only propagating waves are nonlinear ones — typically
compactons (exist in homogeneous lattices only)

» At finite energy density: typically strongly chaotic/turbulent
states (no chaoticity threshold like e.g. in the FPU lattice)
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Initially localized perturbation in a strongly
nonlinear lattice

Regular lattice Disordered lattice

pi_d6 sp-ti_46_dis
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Disordered strongly nonlinear lattices: similar to nonlinear
Anderson localization, but
» extremely localized modes — sharp profiles of the field
» if power of all nonlinear terms the same - no essential
dependence of energy (energy can be rescaled, it influences
the characteristic time only)
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Two setups for disordered strongly nonlinear lattices

We consider below two setups:

» localized initial spot (zero density) on top of vacuum:
how it spreads?

» periodic in space modulation on top of finte energy density:
do we see the first and the second sound?
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Part |: Zero density:
Spreading of a localized wave packet

[with Mario Mulansky, New J. Phys. (2013)]
Strong compactness of the spreading field:
Here " Anderson modes” are one site oscillators = no exponential
tails, the excitation width L is well-defined at each moment of time
Disorder prevents ballistic quasi-compactons
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How to average

Traditionally width is measured at a fixed time :
log P(t) = (log L(t)), but due to large fluctuations one averages
the propagation speed at different densities

Here the averaging of propagation/waiting time at fixed width, i.e.
at fixed density, is possible (because the field has sharp edges):
log AT = (log(T(L+ 1) — T(L)))
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Goal: to describe AT (L, E) for different total energies E
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Guiding phenomenology

Use Nonlinear Diffusion Equation (NDE) as a heuristic model

9 _ 50 ( 29 - / _
9 D@X (p 8x> ) with pdx =E

Self-similar solution (Zeldovich and Kompaneyets, 1950;
Barenblatt, 1952)

1 252 1/a
) = o= (€~ 23000 — w7

yields subdiffusion

[ — /22+aEa/(2+a [D( )]1/(2+a)
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One parameter scaling

Reformulate

224—3

Ea/(2—i—a)(D(1_L o to))l/(2+a)
a

L =

as scaling relaions:

£ L (t=to 1/(2+a) lﬂ N E —(a+1) a(w) 4l = _dlog%g—z
E E2 EdL L ~ dlogw

where w = E/L is the characteristic density, 3f ~ AT
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Spreading in a homogeneously nonlinear lattice

Fully self-similar lattice:
rescaling energy < rescaling time

H— Z +W zqk+ﬂ(Qk+1;Qk)

From the rescaling of energy and time it follows

K/_2 2K

2K
tNE27N = = = LN t — tp)ox—2
? 2K ( 0)

For the case kK = 4 we have

L~ (t—t)* AT ~ 154
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Spreading in a lattice of nonlinearly coupled linear
oscillators
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» Good news: Scaling of NonlDiffEq works
» Bad news: nonlinearity index a is not a constant, but

increases in course of spreading
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Nonlinearly coupled nonlinear oscillators
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» Bad news: Different scaling: AT/E%" = F(L/E)

» Good news: nonlinearity index appears to approach to a
constant
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Nonlinearly coupled nonlinear oscillators
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Yet another power but nearly a straight line in rescaled coordinates
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Newton's cradle:

The elastic force between two spheres is, according to H. Hertz
(1881), ~ x3/2. A chain of spheres is strongly nonlinear
d?x;

yri (x1—1 — %)% = (x — x131)*?
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This is a strongly nonlinear lattice that is easy to model numerically

= . .

Ding-Dong model (Prosen, Robnik, 92) is a chain of linear
oscillators with elastic collisions
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Ding-Dong dynamics

Hamiltonian and collision condition
2 2
p.t+4q
H= Z % when gx—qk+1 =1 then px — pry1, prt1 — Pk
k

Effective calculation of the collision times — simulation on very
long times pissible

Strongly nonlinear lattice: no linear waves, no phonons, all
propagating perturbations are nonlinear
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Check for Nonlinear Diffusion Equation scaling
[JSTAT, to appear]
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Slow subdiffusion:
5
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Conclusions for wavepacket spreading

» Nonlinearly coupled linear oscillators:
Nonlinear Diffusion Equation scaling works, slowing down of
spreading

» Nonlinearly coupled nonlinear oscillators:
Nonlinear Diffusion Equation scaling does not work, but some
scaling works , good power-law

» How to extend to weakly (exponentially) localized modes in
the Anderson localization problems?
Conclusions for Ding-Dong model
» simple but singular strongly nonlinear lattice
» NDE scaling works without slowing down

» holds for distance and mass disorder
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Part ll: Finite energy density:
“sound” modes on top of turbulence [JSTAT, 2015]

Basic model for numerics:

Strongly nonlinear lattice with local and coupling nonlinearities

2 4 4
H_ ZF;/ +5/%l +K,(¢Il+14 qr)
Homogeneous lattices: 3, x = const, Disorder: random [, k;
Energy can be rescaled: E — oE’, t — o1/, below we set
energy density to one
Energy level determines time scale only, there is no transition
order-chaos
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First sound on top of chaos in disordered lattices

Protocol of numerical simulations:
» fix energy density, evolve to equilibrium chaos

» add a perturbation having wave number k:
q) — q; + € cos 2kl

» follow amplitude of this mode Q(k, t) = (3, g/ cos 2mkl)

[cf. Lepri, Livi, Politi, Chaos, 15, 015118 (2005), Zhirov, Pikovsky,
Shepelyansky, PRE 83, 016202 (2011)]
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The data are nicely reproduced by a fit Q(t)

40

= Aexp(—~t)cos Qt
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First sound results: dispersion and damping

frequency

damping
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Second sound on top of chaos in disordered lattices

Protocol of numerical simulations:
» fix energy density, evolve to equilibrium chaos

» add a perturbation (wave number k) to kinetic energy
p? — p?[1 + e cos(2mkl))

» follow amplitude of this mode E(k, t) = (D>, & cos 2mkl),
where & is the local energy

[cf. Gendelman et al, PRE, 2010,2012]
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Second sound results: dispersion
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Two frequencies observed for large k, no one coincides with that of
first sound
Damping constants ~yy ~ K34~y ~ kA5
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First sound in the Ding-Dong lattice

Properties of perturbations depend on the basic energy density, we

study £ =1,2,5
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Second sound in the Ding-Dong lattice

Results for small energy density £ =1

response

response

0.09
0.06
0.03

0

-0.03

0.09
0.06
0.03

-0.03

k=0.125
T
\V/\ B
L L L L L L L
0 1 2 3 4 5 6 7 8
time
k=0.028
T
\ e
I
! ! !
0 10 20 30
time

40

response

response

k=0.125
0.06
0.03 B
0 L L L
0 2 4 6 8 10
frequency
k=0.028

0 L

0 020

Fourier transform suggests a two-frequency fit

E(t) ~ Coexp(—rot) + Cyexp(—71t) cos(Qt) + G exp(—y2t) cos(Q2at)

L L
40608 1 1214
frequency

1618

32/36



Second sound in the Ding-Dong lattice: dispersion

high-frequency mode

low-frequency mode
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Observation of second sound in
graphite at temperatures above 100 K

S. Huberman'*, R. A. Duncan®*, K. Chen’, B. Song’, V. Chiloyan’, Z. Ding’,
A. A. Maznev?, G. Chen't, K. A. Nelson>

Science 364, 375-379 (2019) 26 April 2019
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At room temperature no second sound is observed
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Conclusions for the 1st and the 2nd sound
calculations

v

In strongly nonlinear lattices, with a smooth potential and in
the Ding-Dong model, on top of a “turbulent state” one can
excite first sound (density variations) and second sound
(energy variations)

Two second sound modes

v

v

The same protocol can be realized experimentally

v

Any link to the nonlinear diffusion equation ?
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