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Introduction: history and experimental data

The Nobel Prize in Physics 2001 was awarded jointly to Eric
A. Cornell, Wolfgang Ketterle and Carl E. Wieman "for the
achievement of Bose-Einstein condensation in dilute gases of
alkali atoms, and for early fundamental studies of the
properties of the condensates." The main experimental
results about observation of condensation were published in
1995. Such condensates are very interesting nonlinear
objects which are very familiar to those in nonlinear optics.
Their dynamics in the leading order with respect to the gas
parameter can be described by the Gross-Pitaevskii equation
(GPE) in the external potential modeling magnetic-optical
traps. In nonlinear optics and plasma physics this equation
after simple rescaling coincides with NLSE.
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Introduction: history and experimental data

As well known from quantum mechanics, the scattering
amplitude fl with angular momentum l behaves at small k
proportionally to kl. Therefore at low temperature T → 0

interaction between cold atoms is connected with
s-scattering, characterized by the s-wave scattering
length as. If as > 0 atoms are repelled, in the opposite
case we have attraction between atoms. In the first case
due to both repulsion and magnetic trap dynamics of
condensate is stable. Attraction between atoms leads to
the instability of the condensate and to forthcoming
collapse. In nonlinear optics this instability is known as
modulation instability. In the first experiments for Bose
atoms as > 0 and therefore nothing extraordinary was not
observed in the condensate dynamics.
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Introduction: history and experimental data

The first experiments with negative as were performed with
85Rb by Donley et al., 2001 (below) and Roberts et al.,
2001.
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Introduction: history and experimental data

Study of collapse of the gaseous Bose-Einstein
condensates (BECs) became possible due to using the
Fano-Feschbach resonance technique when the
scattering lengths as can be effectively changed from
positive to negative values. Initially in the experiments
there was used the regime of positive as that results in
formation of stable condensate. Then the as is increased
and becomes negative. This leads to instability and
forthcoming collapse when small "singular" regions with
high atomic density are formed. Development of collapse,
as was shown in many experiments, is accompanied by
escape of almost all atoms from the magnetic traps (more
than 50 %). Therefore it was necessary to explain these
experimental facts.
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Introduction: history and experimental data

The first explanation was given by Yu.M. Kagan with
co-authors in 1997. They suggested the mechanism
based on recombination of three atoms with the formation
of dimer (like H2) and one atom carrying out the
momentum access.

When the mean distance between atoms ∼ n−1/3 much
larger the scattering length as then, in the leading order
relative to small gas parameter na3s ≪ 1, for temperatures
T → 0, the condensate dynamics can be described within
the Gross-Pitaevskii (GP) approximation,

Ĥ =

∫
dr

[
ψ̂†(r)Ĥ0ψ̂(r) +

U0

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
.
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Introduction: history and experimental data

Here Ĥ0 = −1
2∇2 + V0(r) is the one-particle Hamiltonian

in the anisotropic oscillatory trap with
V0(r) =

1
2(ω

2
xx

2 + ω2
yy

2 + ω2
zz

2)

with frequencies ωx, ωy, ωz. We use units for which
fundamental constants are equal unity: ~ = m = 1.

For ultra-cold atoms, as known, main contribution to
scattering comes from the s-scattering that allows to
take the interaction potential U(r) in the form
U(r) = U0δ(r) . The scattering length is defined as
U0 = 2πas (in dimensional units U0 = 2π~2as/m).
Positive as corresponds to repulsion between atoms
gas and as < 0 to attraction. Note that according to the
1st Born approximation the scattering amplitude
f = −2m

~2

∫
U(r)eiqrdr. Hence at k → 0 we have f = −as.
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Introduction: history and experimental data

In the collapse regime we can ignore influence of trap and
arrive at the standard quantum NLSE with V0 = 0.

Hence by decomposition of ψ̂,
ψ̂ = φ+ χ̂,
we give the condensate wave function (c-number)

φ =
〈
ψ̂
〉

and the operator χ̂, responsible for the

non-condensate atoms, has zero expectation value,
〈χ̂〉 = 0.

For small density of the non-condensate atoms φ satisfies
the GPE (which coincides with the NLSE),

iφt +
1

2
∆φ+ |φ|2φ = 0,

where we use dimensionless units when U = 1 and putCollapse of gaseous Bose-Einstein condensates and generation of non-condensate atoms – p. 9



Introduction: history and experimental data

It follows immediately that the three-body
recombination, as inelastic process, appears in the next
order relative to na3s. As the result, the GPE gets
additional term iK3|φ|4φ with constant K3 > 0:

iφt +
1

2
∆φ+ |φ|2φ+ iK3|φ|4φ = 0.

In nonlinear optics this term is responsible for
multi-photon absorption.
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Main goals

In this paper we suggest a new mechanism within the
Gross-Pitaevskii approximation (GPA) which does not
contain additional small gas parameter. It is connected
with generation of non-condensate particles due to the
coherence destruction of collapsing condensate. We
show that the generation of non-condensate particles in
the framework of the GPA (this is a quantum problem)
for small density of non-condensate particles reduces to
the linear problem for the normal and anomalous
correlators:

n(x,x′, t) =
〈
χ̂†(x,t)χ̂(x′, t)

〉
,

σ(x,x′, t) =
〈
χ̂(x,t)χ̂(x′,t)

〉
.
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Main goals

These correlators due to inhomogeneous background
depend on both time and two coordinates r1 and r2, but
not on their difference as in the case of homogeneous
background. The normal correlator at r1 = r2

represents density of non-condensate particles n and
the anomalous correlator σ (at r1 = r2) is responsible
for particle exchange between condensate and
non-condensate reservoirs:

∂t

∫
n(r)dr = −2

∫
Im[φ2σ∗]dr = −∂t

∫
|φ|2dr.

Just the anomalous correlator describes the coherence
”transfer” from condensate to non-condensate particles.
Note that between normal and anomalous correlators
there exists the following inequality: n ≥ |σ|.
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Historical remark

The anomalous correlators in physics appeared in the
Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity where the correlators are responsible
for pairing of two electrons with opposite directions of
spins (1957).

In nonlinear wave physics such type of correlators were
introduced in the so-called S-theory by Zakharov, Lvov
and Starobinets (Sov. Phys. Uspekhi, 17(6), 896-919,
(1975)). S-theory describes the parametric excitation of
spin waves in ferromagnetics due to monochromatic
electromagnetic wave. This σ-correlator is responsible
for transition of coherence from the monochromatic
wave to spin waves. If σ = 0 then excitation is
impossible. Unlike our case the σ-correlators for spin
waves in the S-theory depend on the difference r1 − r2.
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Main goals

The equations of motion for correlators are obtained in
the framework of the Hartree-Fock-Bogolyubov (HFB)
approximation.

For small density of non-condensate particles the
equations for n(x, x′) and σ(x, x′) are linear:

i∂tn(x
′, x) = −1

2(∆−∆′)n(x′, x))

+ 2n(x′, x)(|φ|2 − |φ|′2) + φ2σ∗(x′, x)− φ′∗2σ(x′, x),

i∂tσ(x
′, x) = −1

2(∆ +∆′)σ(x′, x)

+2σ(x′, x)(|φ|2 + |φ|′2) + φ2n(x, x′) + φ′2n(x′, x),
where prime means dependence on x′.

In this case these linear equations for correlators admit
separation of variables that leads to the linearized GP
equation on the background of the collapsing solution.
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Main goals

Hence, the quantum problem about the
non-condenstate particles generation reduces to the
linear stability analysis for collapsing regime, describing
by the GPE. As it was shown by Zakharov and
Kuznetsov (1986), in the 3D NLSE there are a few
possible regimes of collapses: quasi-classical strong
collapse when a finite amount of particles is captured
into singularity, quasi-classical weak collapses when
formally zeroth amount of particles can be captured into
singularity and a weak collapse describing by the
self-similar solution of the NLSE.

Quasi-classical approximation corresponds to the
Thomas-Fermi approach. In Zakharov-Kuznetsov paper
it was shown that all quasi-classical regime of collapses
are unstable except probably the only one, i.e., the
weak collapse.
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Strong collapse

Make a few general remarks.

The GPE describes for particle motion in the
self-consistent potential V = V0(r)− |φ|2. For small gas
density φ is defined mainly by the trap. However,
increase in density opens the so-called modulation
instability with the growth rate γ = k(|A|2 − k2/4)1/2 (A is
the condensate amplitude) which appears due to
attraction and saturates at kcr = 2|A|.
For kcr ≫ λ−1 influence of the trap to the modulation
instability can be neglected where λ ∼ ω−1/2 is the trap
ground state size. It gives n0 ≫ ncr ∼ (ω)−1.
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Strong collapse

In the opposite case, the trap influence is more
essential but even in this case we have only
quasi-stationary state. It follows from the scaling
transformation remaining ϕ(r) → α−3/2ϕ(r/α) remaining
the total N . Under this transform the Hamiltonian
becomes function of the scaling parameter α

H(α) =
ω2α2

2
Ir +

1

2α2
I1 −

1

2α3
I2

where
Ir =

∫
r2|ϕ|2dr, I1 =

∫
|∇ϕ|2dr, I2 =

∫
|ϕ|4dr.

H(α) tends to −∞ as α → 0 independently on the first
two terms.
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Strong collapse

Thus, H is unbounded functional that is one of the main
criteria of collapse in this system. Collapse in this case
can be considered as particle falling down in the
unbounded self-consistent potential. At small number of
N0 . Ncr, H has a local minimum due to the trap.
However, a state corresponding to this minimum will be
always quasi-stationary. The latter means that particles
which were initially in this state will tunnel through the
barrier and collapse afterwards. Of course, in this case
the total number of particles must be macroscopically
large.

The Hamiltonian unboundedness can be established
also for arbitrary (but finite) values of ωi. Thus, the
system must evolve to the collapse regime for any initial
(but macroscopically large) conditions. Sufficient
criterion of collapse is H < 0, according to the virial
theorem.
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Strong collapse: solution

The GPE in the Thomas-Fermi approximation is written
for density n0 and phase Φ0 as

∂tn0 + div(n0∇Φ0) = 0,

∂tΦ0 +
(∇Φ0)

2

2
− n0 = 0.

According to Zakharov and Kuznetsov (1986), the exact
spherically symmetric collapsing solution of these Eqs.
has the form:
n0(r, t) = a−3(t)λ2(1− ξ2)
where
ξ = r/a(t), Φ0(ξ, t) =

1
2a(t)ȧ(t)ξ

2 + Φ̃0(t).
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Strong collapse: solution

For this solution λ =
√

3N0/π and the radial scaling
parameter a(t) satisfies Newton equation
ä(t) = −∂V

∂a that describes the falling of a classical
particle to the center in the potential V = −2λ2/(3a3).

Asymptotically a tends to the power dependence:

a(t) →
(
5/
√
3
)2/5

(t0 − t)2/5 and n0 ∼ (t0 − t)−6/5.

This solution is meaningful only at ξ ≤ 1, and if ξ > 1 n0
is set equal to zero.

Point ξ = 1 for this solution plays the same role as the
turning point for the 1D stationary Schrodinger
equation. This means the found solution should be
matched with the linear solution at ξ > 1. It is interesting
that the matching area ∆ξ in this case vanishes like
a1/3λ−2/3.Collapse of gaseous Bose-Einstein condensates and generation of non-condensate atoms – p. 20



Strong collapse: instability

Linear stability analysis shows (see ZK, 1986) instability
of the constructed exact semi-classical solution.

Since |φ|2 > 1/a2 for a strong collapse, the most
dangerous from the standpoint of stability are
shortwave perturbations with k ≫ 1/a. Recall that the
growth rate of the modulation instability
Γ =

√
k2A2 − k4/4 has a maximum at k = 2A when the

dispersion terms in the maximum region are of the
order of the nonlinear ones. Thus at k2 ≪ |A|2 the
dispersion terms, conversely, are insignificant and the
instability is quasiclassical in this case.

Because of shrinking the collapsing region, it is evident
that the wave number changes in time as k = p/a(t)

where p is a time independent number and A2 = λ2/a3.
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Strong collapse: instability

Thus, the time dependent growth rate
Γ(t) ≈

√
λ2p2/a5 → 3

25p(t0 − t)−1. Hence by integrating
of this expression in time we get how the perturbation
behaves in time: exp

(∫
Γ(t)dt

)
→ (to − t)γ where

γ = −
√
3p/5. Since p≫ 1 this means the instability of

the strong-collapse regime relative to short-wave
perturbations.

Exact analysis of the linearized problem confirms this
result.
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Anisotropic collapse

In the anisotropic case, collapsing semi-classical
solutions of GPE can be found by the same procedure
as in the isotropic case

n0(r, t) =
1

bx(t)by(t)bz(t)
f0

(
ξ =

x

bx(t)
, η =

y

by(t)
, ζ =

z

bz(t)

)
.

The continuity equation is also integrated explicitly. The
eikonal equation gives f0 = λ2(1− ξ2 − η2 − ζ2) where
bi(t) are defined from coupled Newton equations,

b̈i = 2
λ2

bibxbybz
,

with the potential V = −2λ2(bxbybz)
−1.
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Anisotropic collapse

In the axial-symmetrical case, we have two equations
for bx = by and bz. Their analysis shows two kind
behaviors:
bx(t) → 2λ

√
|U0|
bz(t0)

√
t0 − t, bz(t) → bz(t0)

with collapse to sigar-shape form;

bx(t) → bx(t0), bz(t) →
(
9|U0|λ

2

b2x(t0)

)1/3
(t0 − t)2/3

with collapse into disk-shape form. Such types of
collapses were observed in JILA experiment with
formation of thorns (Donley, at el, Nature, 2001). The
authors used instead of «thorns» the word «jets».
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Weak semi-classical collapses

Besides the strong collapse solution the GPE in the
semi-classical limit has also the whole family of
self-similar solutions with amplitude A ∼ (t0 − t)−β and
scale a ∼ (t0 − t)1−β/2 for which 6/5 > β > 1. It is
possible to check by means of the same argumentation
that all of them are also unstable. In this case β = 6/5
corresponds to the strong collapse regime, and β = 1 to
weak collapse.
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Weak collapse

Weak collapse is described by the self-similar solution

of the GPE: ψ = (t0 − t)−1/2−iαχ
[

|r−r0|
(t0−t)1/2

]
where

α = 0.545, at ξ → ∞ χ→ C
ξ1+2iα with C = 1.01.

V = arg (χξ)

0

0.5

1

1.5

|χ(ξ)|
V(ξ)
C/ξ
-2α/ξ

ξ
0 2 4 6 8

-0.5

0

0.5

1

1.5
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Weak collapse

Linearization of the GPE on the background of the
self-similar solution, χ→ χ+ u, gives for perturbation u

i
∂u

∂τ
+i(1/2+iα)u+

i

2
ξu′+

1

2
∆u+2|χ|2u+χ2u∗ = 0, C.C.Eq.

where

∆ =
1

ξ2
∂

∂ξ
ξ2
∂

∂ξ
− l(l + 1)

ξ2

and τ = −ln t0−t
t0

is the new «logarithmic» time.

These equations were solved numerically with initial
condition in the Gaussian form, multiplied by ξl, for
different l. The mode l = 0 was most unstable. It grows
exponentially ∼ exp(γmaxτ) as τ → ∞ with the growth
rate γmax = 0.984984.
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Weak collapse

The most unstable mode l = 0 has the form:

r

|u
(ξ

)|
/|u

(ξ
) m

ax
|

0 5 10 15 20

0.2

0.4

0.6

0.8

1
|u(ξ,τ = 0)|
|u(ξ,τ = 0.8)|
|u(ξ,τ = 2.2)|
|u(ξ,τ = 3.6)|
|u(ξ,τ = 5.0)|
|u(ξ,τ = 6.4)|

All other perturbations with l ≥ 2 occur stable.
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Weak collapse

It is worth noting that the recent experimental
observations (Phys. Rev. X 6, 041058 (2016)) show that
collapses in gaseous BECs with low densities should
be related to the weak collapse regimes.

From another side after these numerics we could say
that we have found instability of weak collapse that
should provide generation of non-condensate atoms.
However, γmax in numerics was very close to unity. We
know if any nonlinear solution depends on some
parameters, derivative of such solution relative to the
parameters satisfies the linearized equation.
Differentiation ψs against t0 gives exactly the growth
rate γ = 1. Then we have checked that the obtained in
numerics unstable mode coincides exactly with this shift
mode and can not provide instability. Note that first time
such shift mode was exploited by Barenblatt and
Zel’dovich for flame wave (1965).
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Weak collapse

Thus, in the Thomas-Fermi regime, we immediately
arrive at the generation of non-condensate particles. As
for the stability of a weak collapse and, accordingly, the
formation of non-condensate particles in the weak
collapse, this problem remains open up to now.

Also note that the first numerical simulations (Zakharov,
Kuznetsov, Musher, 1984) demonstrated that collapse
in the 3D NLSE has the behavior corresponding to a
weak collapse.

Mention also papers (Vlasov, Piskunova and Talanov,
1984) and (Zakharov et al. 1989) where it was found the
so-called black holes regime resulting in appearance of
logarithmic corrections to 1/r2 -singularity for density.

In the paper by V. Malkin and E. Shapiro (JETP, 1989)
there was some numerical indication to instability of
weak collapse.
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Conclusion

We suggest a new mechanism of the collapse
destruction for gaseous Bose-Einstein condensates
(BECs) with attraction connected with loss of the
condensate coherence and generation of the
non-condensate particles. This process is described
within the Gross-Pitaevskii (GP) approximation.

We derive the corresponding equations for the normal
and anomalous pair correlators characterizing the
non-condensate atom component for smaller
non-condensate number density in comparison with the
condensate density. The normal correlator depending
on coordinates x and x

′ and on time t as well
represents at x = x

′ a density of the non-condensate
atoms, the anomalous correlator is responsible for atom
exchange between the condensate and
non-condensate components.
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Conclusion

We show that the generation of non-condensate atoms
is possible if the collapsing solution of the GP equation
will be linearly unstable.

Within the time-dependent Thomas-Fermi (TF)
approximation we analyze the linear stability problem of
the semi-classical collapsing solution found by
Zakharov and Kuznetsov (1986).
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