Inflation and reheating in the early Universe

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

XIXth Scientific School 'Nonlinear Waves' Nizhny Novgorod Russia

Dmitry Gorbunov (INR)

Experimenal data in Particle Physics

- We know the initial states of particles before interaction, use photons, electrons, positrons, protons, neutrons, ions, neutrinos...
- Then they collide and we measure the particles in the final state
- Thus we learn about interaction
- Each experiment may be repeated:
 - with the same facility
 - building a copy in the same or other place
 - constructing similar devise

And results must be the same ... on average within QM

theory predicts distributions

need many collisions

. . .

Experimenal data in Cosmology and Astrophysics

- Each experiment may be unique (unrepeatable):
 - observe only one Universe
 - (so far) registered only one SN explosion
 - might observe only one magnetic monopole (?)
 - can study only one star
 - (so far) can directly investigate only one planet
 - • •
- we register photons, neutrinos, gravitational waves, electrons, positrons, protons, nuclei,

but only photons, neutrinos and gravitational waves can point at the source

- Can not directly check the model of sources
- Can not directly check the media in between

Inflation

Inhomogeneities in the Universe

5 Reheating

Outline

"Natural" units in particle physics

$$\hbar = c = k_{\rm B} = 1$$

measured in GeV: energy E, mass M, temperature T

 $m_p = 0.938 \text{ GeV}, 1 \text{ K} = 8.6 \times 10^{-14} \text{ GeV}$

measured in GeV⁻¹: time *t*, length *L*

1 s = $1.5 \times 10^{24} \text{ GeV}^{-1}$, 1 cm = $5.1 \times 10^{13} \text{ GeV}^{-1}$

Gravity (General Relativity): $V(r) = -G\frac{m_1m_2}{r}$ [G] = M^{-2}

 $M_{\rm Pl} = 1.2 \times 10^{19} \, {\rm GeV} = 22 \, \mu {\rm g}$

 $G \equiv \frac{1}{M_{\rm Pl}^2}$

Outline

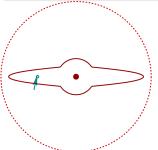
"Natural" units in cosmology

$$1 \text{ Mpc} = 3.1 \times 10^{24} \text{ cm}$$

1 AU = 1.5×10^{13} cm 1 ly = 0.95×10^{18} cm

 $1 \text{ pc} = 3.3 \text{ ly} = 3.1 \times 10^{18} \text{ cm}$

mean Earth-to-Sun distance distance light travels in one year $1 \text{ yr} = 3.16 \times 10^7 \text{ s}$ distance to object which has a parallax angle of one arcsec



100 AU — Solar system size 1.3 pc — nearest-to-Sun stars 1 kpc — size of dwarf galaxies 50 kpc — distance to dwarves 0.8 Mpc — distance to Andromeda 1-3 Mpc — size of clusters 15 Mpc — distance to Virgo

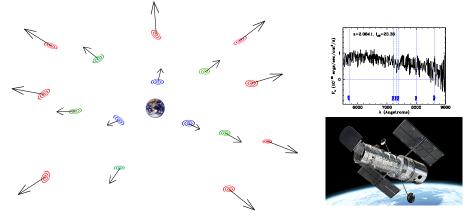
Earth's motion around Sun

- 2 Hot Big Bang theory in brief
- Inflation
- Inhomogeneities in the Universe
- 5 Reheating

Universe is expanding

$$\lambda_{\rm abs.}/\lambda_{\rm em.}\equiv 1+z$$

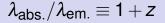
Doppler redshift Z of light

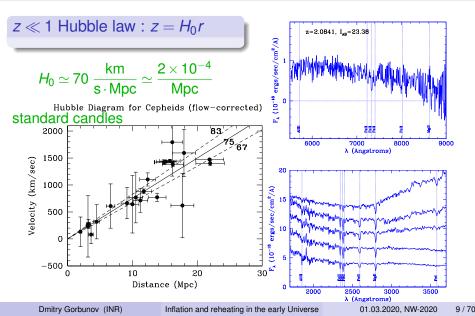


 $L \propto a(t) \longrightarrow n \propto a^{-3}$

Hubble parameter $H(t) = \frac{\dot{a}(t)}{a(t)}$

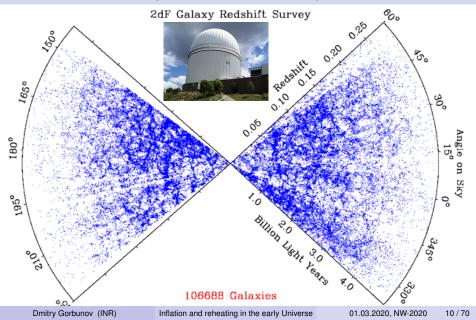
Expansion: redshift z





ЯN ИК

Universe is homogeneous and isotropic



The Universe: age & geometry & energy density

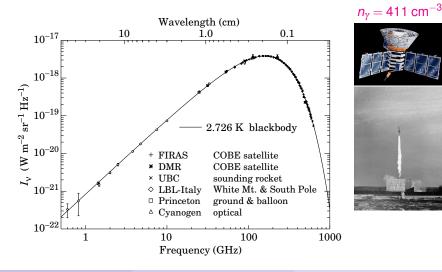
 $[H_0] = L^{-1} = t^{-1}$

time scale: $t_{H_0} = H_0^{-1} \approx 14 \times 10^9 \text{ yr}$		age of our Universe	
spatial scale: $\textit{I}_{H_0} = H_0^{-1} \approx 4.3 \times 10^3 \; \text{Mpc} \approx 10^{28} \text{cm}$		size of the visible Universe	
t_{H_0} is in agreement with various observations			
homogeneity and isotropy in	n 3d:	if exact	
flat, spherical or hyperbolic		R^3 , S^3 or H^3	
Observations:	"very" flat	$R_{curv} > 30 imes I_{H_0}$	
order-of-magnitude estimate	e:	$1/I_{u} \sim GM_{U}/I_{U}^{2} \sim G ho_{0}4\pi/3I_{H_{0}}^{3}/I_{H_{0}}^{2}$	
flat Universe			
$ ho_{\mathcal{C}}=rac{3}{8\pi}H_0^2M_{_{\mathrm{Pl}}}^2pprox 0.5$	$53 \times 10^{-5} \frac{\text{GeV}}{\text{cm}^3} \longrightarrow$	5 protons in each 1 m^3	
Dmitry Gorbunov (INR)	Inflation and reheating in the early	Universe 01.03.2020, NW-2020 11 / 70	

 $T_0 = 2.726 \,\mathrm{K}$

Universe is occupied by "thermal" photons

the spectrum (shape and normalization!) is thermal



Conclusions from observations

The Universe is homogeneous, isotropic, hot and expanding...

interval between events gets modified

$$\Delta s^2 = c^2 \Delta t^2 - \frac{a^2(t)}{\Delta \mathbf{x}^2}$$

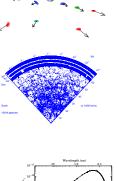
• in GR expansion is described by the Friedmann equation

$$\begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 = H^2(t) = \frac{8\pi}{3} G\rho_{\text{density}}^{\text{energy}} \\ \rho_{\text{density}}^{\text{energy}} = \rho_{\text{matter}} + \rho_{\text{radiation}} + \dots$$

$$\rho_{\text{matter}} \propto 1/a^3(t), \ \rho_{\text{radiation}} \propto 1/a^4(t), \ \rho_{\text{curvature}} \propto 1/a^2(t)$$

in the past

the matter density was higher, our Universe was "hotter", and was filled with electromagnetic plasma



a(t) reveals the composition of the present Universe

$$\Delta s^2 = c^2 \Delta t^2 - \frac{a^2(t)}{\Delta x^2} \rightarrow ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

How do we check it?

Light propagation changes... by measuring distance *L* to an object!

Measuring angular size θ of an object of known size d

single-type galaxies

"standard candles"



- lensing of CMB anisotropy

$$\theta(t) = \frac{d(t)}{L}$$

~45 KM

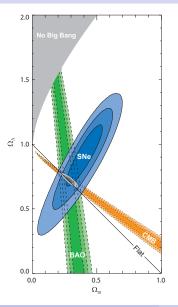
Measuring brightness J of an object of known luminosity F

$$J = \frac{F}{4\pi L^2}$$

In the expanding Universe all these laws get modified

Dmitry Gorbunov (INR)

Astrophysical and cosmological data are in agreement

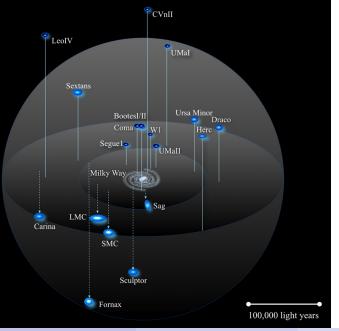


$ \begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}} \rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda} $			
$\rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t)$, $\rho_{\text{matter}} \propto 1/a^3(t)$			
$ ho_{\Lambda} = cons$	51		
$rac{3H_0^2}{8\pi G}= ho_{ m density}^{ m energy}(t_0)\equiv ho_cpprox$	$0.53\times 10^{-5}\frac{GeV}{cm^3}$		
radiation:	$\Omega_\gamma \equiv rac{ ho_\gamma}{ ho_c} = 0.5 imes 10^{-4}$		
Baryons (H, He):	$\Omega_{ m B}\equivrac{ ho_{ m B}}{ ho_{c}}=0.05$		
Neutrino:	$\Omega_{v}\equivrac{\Sigma ho_{v_{i}}}{ ho_{c}}<0.01$		
Dark matter:	$\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{\rho_{\rm O}} = 0.27$		
Dark energy:	$\Omega_{\text{DM}} \equiv rac{ ho_{\text{DM}}}{ ho_c} = 0.27$ $\Omega_{\Lambda} \equiv rac{ ho_{\Lambda}}{ ho_c} = 0.68$		

Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

01.03.2020, NW-2020 15 / 70



Dmitry Gorbunov (INR)

stable on cosmological time-scale

Dark Matter Properties

(If) particles:

If were in

If not:

for bosons

a nonrelativistic long before RD/MD-transition
$$(z \simeq 3000, T = 0.8 \text{ eV})$$
a (almost) collisionless
a (almost) electrically neutral
b (almost) electrically electrically neutral
b (almost) electrically electrically neutral
b (almost) electrically electrica

p=0

Present knowledge about the past: back to 2-3 MeV

past stages

deceleration/acceleration reionization recombination RD/MD equality nucleosynthesis neutrino decoupling

 $\ddot{a} = 0$ $\gamma + H \rightarrow p + e$ $p + e \rightarrow \gamma + H^{*}$ $\rho_{matter} = \rho_{radiation}$ $p + n \rightarrow D + \gamma, etc$ $v_{e} + n \rightarrow p + e$

observables

SN Ia, CMB, clusters CMB, quasars, stars CMB, BAO CMB, BAO cold gas clouds cold gas clouds

 $H^2 \propto \rho_{\gamma} + \rho_{\nu}$

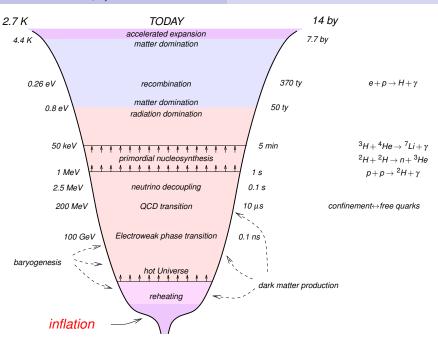
New Physics in Cosmology: any energy scales...

Cosmology constrains the time-scale, rather than energy-scale

 $\Gamma \sim H \propto T^2/M_{\rm Pl}$

- Dark matter (if particles)
- Dark energy
- Baryon asymmetry

be produced by $T \gg 1 \text{ eV}$ be present by $T \gg 5 \text{ K}$ be generated by $T \gg 1 \text{ MeV}$

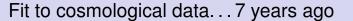


Dmitry Gorbunov (INR)

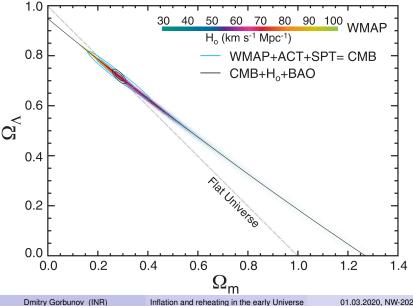
Inflation and reheating in the early Universe

01.03.2020, NW-2020 20 / 70

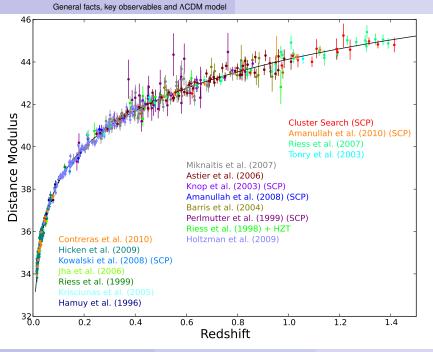
NR



1212.5225

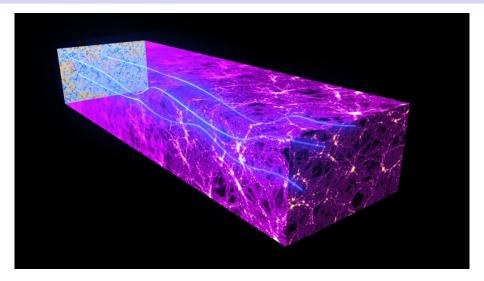


01.03.2020, NW-2020 21/70



Dmitry Gorbunov (INR)

Inhomogeneities from CMB & LSS: propagation in expanding Universe



Dmitry Gorbunov (INR)

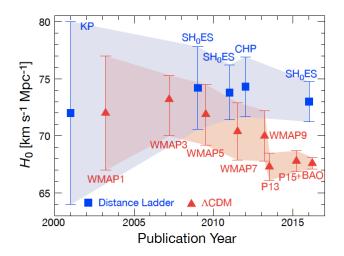
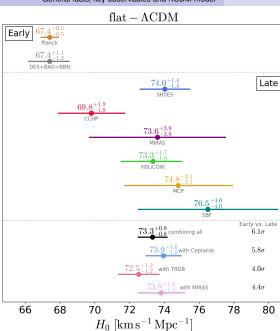


Figure 1: Recent values of H_0 as a function of publication date since the Hubble Key

1706.02739 Project (adapted from Beaton et al. 2016). Symbols in blue represent values of H_o

determined in the nearby universe with a calibration based on the Canhaid distance scale Dmitry Gorbunov (INR) 01.03.2020, NW-2020 24/70 Inflation and reheating in the early Universe



Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

01.03.2020, NW-2020 25 / 70

1907.10625

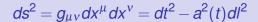
2 Hot Big Bang theory in brief

Inflation

Inhomogeneities in the Universe

5 Reheating

FLRW metric for flat space



 $H(t) = \frac{\dot{a}(t)}{a(t)}$

coordnate distance: $I = \int dI$

physical distance at the moment *t*:

 $L(t) = a(t) \times I = a(t) \times \int dI$

Photons in the expanding Universe

$$S=-rac{1}{4}\int d^4x\sqrt{-g}g^{\mu
u}g^{\lambda
ho}F_{\mu\lambda}F_{
u
ho}$$

 $dt = ad\eta$ conformally flat metric $ds^2 = dt^2 - a^2(t)\delta_{ij}dx^i dx^j \longrightarrow ds^2 = a^2(\eta)[d\eta^2 - \delta_{ij}dx^i dx^j]$

$$S = -\frac{1}{4} \int d^4 x \, \eta^{\mu\nu} \eta^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho} , \qquad \qquad A^{(\alpha)}_{\mu} = e^{(\alpha)}_{\mu} e^{ik\eta - i\mathbf{kx}} , \quad k = |\mathbf{k}|$$

 $\Delta x = 2\pi/k$, $\Delta \eta = 2\pi/k$

$$\lambda(t) = a(t)\Delta x = 2\pi \frac{a(t)}{k}, \quad T = a(t)\Delta \eta = 2\pi \frac{a(t)}{k}$$

Redshift and the Hubble law $\lambda_0 = \lambda_i \frac{a_0}{a(t_i)} \equiv \lambda_i (1 + z(t_i))$

$$\mathbf{p}(t) = \frac{\mathbf{k}}{\mathbf{a}(t)} , \ \omega(t) = \frac{k}{\mathbf{a}(t)}$$

for not very distant objects

 $H_0 \equiv \dot{a}_0/a_0$

$$a(t_i) = a_0 - \dot{a}(t_0)(t_0 - t_i) = a_0[1 - H_0(t_0 - t_i)]$$

$$z(t_i) = H_0(t_0 - t_i) = H_0 r$$
, $z \ll 1$

similar reddening for other relativistic particles

 $\mathbf{p} = \frac{\mathbf{k}}{a(t)}$ is true for massive particles as well

Friedmann equation for the present Universe

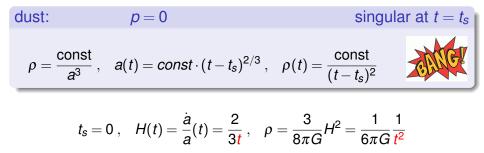
$$\begin{aligned} H^2 &\equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G(\rho_{\rm M} + \rho_{rad} + \rho_{\Lambda}) \\ \rho_c &\equiv \frac{3}{8\pi G}H_0^2 \\ \rho_c &= \rho_{\rm M,0} + \rho_{rad,0} + \rho_{\Lambda,0} = \rho_c = 0.5 \cdot 10^{-5}\frac{\rm GeV}{\rm cm^3} , \\ \Omega_X &\equiv \frac{\rho_{X,0}}{\rho_c} \end{aligned}$$

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho_{c}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3} + \Omega_{rad}\left(\frac{a_{0}}{a}\right)^{4} + \Omega_{\Lambda}\right]$$

Dmitry Gorbunov (INR)

Examples of realistic cosmological solutions

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho$$



Dmitry Gorbunov (INR)

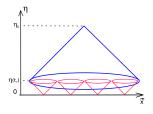
Cosmological (particle) horizon $I_H(t)$

distance covered by photons emitted at t = 0

the size of causally-connected region the size of the visible part of the Universe

in conformal coordinates: $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size of the horizon equals $\eta(t) = \int d\eta$

$$I_{H}(t) = a(t)\eta(t) = a(t)\int_0^t \frac{dt'}{a(t')}$$



dust

horizon problem

$$I_H(t) = 3t = rac{2}{H(t)}$$
, while $L_{phys} \propto a(t) \propto t^{2/3}$

Dmitry Gorbunov (INR)

Present size of the recombination horizon

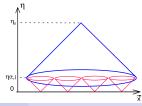
matter domination:

$$l_{H,r} = 2H_r^{-1}$$
 $H_r^2 = \frac{8\pi}{3} G\rho_M(t_r) = \frac{8\pi}{3} G\rho_{M,0} \left(\frac{a_0}{a_r}\right)^3 = \frac{8\pi}{3} G\rho_c \Omega_{M,0} (1+z_r)^3$.

 at recombination:
 $l_{H,r} = \frac{2}{H_0 \sqrt{\Omega_M}} \frac{1}{(1+z_r)^{3/2}}$

 today:
 $l_{H,r}(t_0) = l_{H,r} \times \frac{a_0}{a_r} = \frac{2}{H_0 \sqrt{\Omega_M}} \frac{1}{\sqrt{1+z_r}}$

$$\frac{I_{H_0}}{I_{\mathrm{H},r}(t_0)} \sim \sqrt{1+z_r} \simeq 30$$



Examples of realistic cosmological solutions

$$p = \frac{1}{3}\rho \qquad \text{singular at } t = t_s$$

$$\rho = \frac{\text{const}}{a^4}, \quad a(t) = \text{const} \cdot (t - t_s)^{1/2}, \quad \rho(t) = \frac{\text{const}}{(t - t_s)^2} \qquad \text{for equation}$$

$$t_s = 0, \quad H(t) = \frac{\dot{a}}{a}(t) = \frac{1}{2t}, \quad \rho = \frac{3}{8\pi G}H^2 = \frac{3}{32\pi G}\frac{1}{t^2}$$

$$l_H(t) = a(t)\int_0^t \frac{dt'}{a(t')} = 2t = \frac{1}{H(t)}.$$
If thermal equilibrium
$$T = \text{const}/a$$

$$\rho = \frac{\pi^2}{30}g_*T^4$$

Entropy conservation: adiabatic expansion

$$abla_{\mu}T^{\mu0} = 0 \longrightarrow \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + \rho) = 0$$

the equation of state

 $p = p(\rho)$

many-component fluid, in case of thermal equilibrium

other equations

$$-3d(\ln a) = \frac{d\rho}{\rho + \rho} = d(\ln s)$$

entropy of cosmic primordial plasma is conserved in a comoving frame

 $sa^3 = const$ entropy problem

Flatness problem

- Take non-flat 3-dim manifold (general case)
- Curvature contribution to the total energy density behaves as $\rho_{curv}(t) \propto 1/a^2(t)$
- Then at present:

$$\begin{array}{l} 0.01 > \Omega_{curv} = \frac{\rho_{curv}\left(t_{0}\right)}{\rho_{c}} \sim 10^{-4} \times \frac{\rho_{curv}\left(t_{0}\right)}{\rho_{rad}\left(t_{0}\right)} = 10^{-4} \times \frac{a^{2}\left(t_{0}\right)}{a^{2}\left(t_{*}\right)} \frac{\rho_{curv}\left(t_{*}\right)}{\rho_{rad}\left(t_{*}\right)} \\ \sim 10^{-4} \times \frac{T_{*}^{2}}{T_{0}^{2}} \frac{\rho_{curv}\left(T_{*}\right)}{\rho_{tot}\left(T_{*}\right)} \end{array}$$

• For hypothetical Planck epoch $T_* \sim M_{Pl} \sim 10^{19} \, {\rm GeV}$ one gets

$$0.01 > \Omega_{\textit{curv}} \sim 10^{60} \times \frac{\rho_{\textit{curv}} \left(M_{\textit{Pl}} \right)}{\rho_{\textit{tot}} \left(M_{\textit{Pl}} \right)}$$

 R_{curv}/R_{Plankc} > 10³¹

enormously huge original manifold !!

씲

Initial condition problems:

- horizon
- entropy
- curvature
- singularity...
- heavy relics...

• ...

Hot Big Bang theory in brief

N

Examples of realistic cosmological solutions

vacuum:

$$T_{\mu\nu} = \rho_{\nu ac} \eta_{\mu\nu}$$

So = -\lambda \left(\sqrt{-a} d^4 x)

 $\rho = -\rho$

$$a = ext{const} \cdot ext{e}^{ extsf{H}_{ ext{dS}}t} \ , \quad extsf{H}_{ ext{dS}} = \sqrt{rac{8\pi}{3}G
ho_{ extsf{vac}}}$$

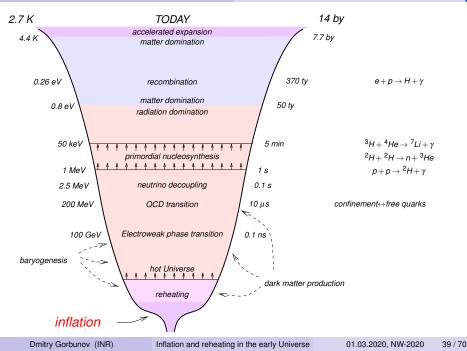
de Sitter space: space-time of constant curvature

$$ds^2 = dt^2 - e^{2H_{dS}t} d\mathbf{x}^2$$

$\ddot{a} > 0$, no initial singularity

no cosmological horizon: $I_{\rm H}(t) = e^{H_{dS}t} \int_{-\infty}^{t} dt' e^{-H_{dS}t'} = \infty$

Hot Big Bang theory in brief



General facts, key observables and ACDM model

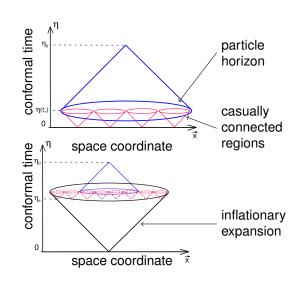
2 Hot Big Bang theory in brief

- Inhomogeneities in the Universe
- 5 Reheating

Inflation

Inflationary solution of Hot Big Bang problems

- no initial singularity in dS space
- all scales grow exponentially, including the radius of the 3-sphere the Universe becomes exponentially flat
- any two particles are at exponentially large distances no heavy relics no traces of previous epochs!
- no particles in post-inflationary Universe to solve entropy problem we need post-inflationary reheating



Inflation

Inflation: general remarks

Simplest variant

$$H^2 = rac{8\pi}{3M_{Pl}^2}
ho_{\Lambda} = {
m const}\,, \Rightarrow a(t) \propto {
m e}^{Ht}$$

is not suitable: inflation must not last for ever!

Universe has to reheat after! T_{reh}

$$ho_{e} \gtrsim \left(3\,\text{MeV}
ight)^{4}\,, \,\, ext{and better} \,\,
ho_{e} \gtrsim \left(100\, ext{GeV}
ight)^{4}\,,$$

• How long? Horizon problem: present size of the horizon at the end of inflation

$$I_{H,e}(t_0) = a_0 \int_{t_{Pl}}^{t_e} \frac{dt}{a(t)} = a_0 \int_{t_{Pl}}^{t_e} \frac{da}{a^2} \frac{1}{H} \sim \frac{a_0}{a(t_{Pl})} \cdot \frac{1}{H(t_{Pl})}$$

Solution to the horizon problem:

$$1 \lesssim \frac{I_{H,e}\left(t_{0}\right)}{I_{H,0}} \sim \frac{a_{0}}{a(t_{Pl})} \frac{H_{0}}{H(t_{Pl})} = \frac{a_{0}}{a(t_{reh})} \frac{a_{reh}}{a(t_{e})} \frac{a(t_{e})}{a(t_{Pl})} \cdot \frac{H_{0}}{H(t_{Pl})}$$

Introducing the number of e-foldings

$$N_e^{tot} = \ln \frac{a(t_e)}{a(t_{Pl})}, \ N_e^{tot} = \int_{t_{Pl}}^{t_e} dt H(t) \sim H_e \cdot \Delta t_{infl}$$

For relativistic particles $ho \propto T^4 \propto 1/a^4 \ \Rightarrow \ a_0/a(t_{reh}) \sim T_{reh}/T_0$

Inflation: general remarks

• How long? Solution to the horizon problem:

$$1 \lesssim \frac{I_{H,e}\left(t_{0}\right)}{I_{H,0}} \Rightarrow N_{e}^{tot} \gtrsim \log \frac{T_{0}}{H_{0}} + \ln \frac{a(t_{e})}{a_{reh}} + \ln \frac{H(t_{Pl})}{T_{reh}} \simeq 50 - 60$$

Inflation lasts not less than

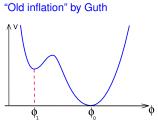
(accepting $H^2 \sim \rho / M_{Pl}^2$)

$$\Delta t_{infl} \sim N_e^{tot}/H_e \sim 10^{-11} \, \mathrm{c} \cdot \left(rac{1 \, \, \mathrm{TeV}}{T_{reh}}
ight)^2$$

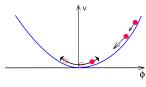
we must reheat the Universe then!

 In realistic models N^{tot}_e ≫ 100 !!! Inflatinary stage may be short, but expansion is enormous! Inflation

Inflatinary stage: simplest models



"Chaotic inflation"



needs superplanckian field values!

and ends up in a false vacuum reheating due to percollations However: for sufficiently long inflationary stage requires $\Gamma < H_{infl}^4$

hence the bubbles never collide

does not work in fact!

starts from a hot stage

 $\ddot{\phi}$ + 3

ε =

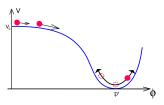
$$3H\dot{\phi}+V'(\phi)=0$$

$$=rac{M_{Pl}^2}{16\pi}\left(rac{V'}{V}
ight)^2,\ \eta=rac{M_{Pl}^2}{8\pi}rac{V''}{V}$$

,

 $V(\phi) \propto \phi^n \Rightarrow \varepsilon, \eta \sim M_{Pl}^2/\phi^2 \ll 1 \quad \leftarrow \text{slow-roll conditions}$

"New inflation"



Initial condition is very specific!

$$H^2 = \frac{8\pi}{3M_P^2} V(\phi) , \quad a(t) \propto e^{Ht}$$

and we require

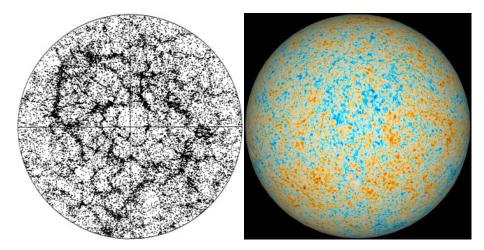
$$V(\phi) < M_{Pl}^4$$

General facts, key observables and ACDM model

Pot Big Bang theory in brief

5 Reheating

Inhomogeneous Universe



Large Scale Structure

CMB anisotropy

Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

01.03.2020, NW-2020 46 / 70

Small inhomogeneities in the expanding Universe

matter perturbations (perfect fluid approximation)

$$T_0^0 o
ho(t) + \delta
ho(\eta, \mathbf{x}), \quad T_i^0 o \partial_i v(\eta, \mathbf{x}), \quad T_j^i o \delta
ho(\eta, \mathbf{x})$$

gravitational perturbations (scalar and tensor modes)

$$ds^2 = a^2(\eta) \left[(1 + 2\Phi(\eta, \mathbf{x})) d\eta^2 - (1 + 2\Psi(\eta, \mathbf{x})) d\mathbf{x}^2 - h_{ij}^{TT}(\eta, \mathbf{x}) dx^i dx^j \right]$$

Equations for linear perturbations, $\delta \rho / \rho \equiv \delta \ll 1$, $\Phi \ll 1$, etc

$$R_{\mu\nu} + \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} \rightarrow \dots$$
$$\nabla_{\mu} T^{\mu\nu} = 0 \rightarrow \dots$$

These inhomogeneities (matter perturbations)

originate from the initial matter density (scalar) perturbations

 $\delta\rho/\rho\sim\delta T/T\sim$ 10^-4, which are

adiabatic
$$\delta\left(\frac{n_B}{s}\right) = \delta\left(\frac{n_{DM}}{s}\right) = \delta\left(\frac{n_L}{s}\right)$$
Gaussian $\langle \frac{\delta\rho}{\rho}(\mathbf{k}) \frac{\delta\rho}{\rho}(\mathbf{k}') \rangle \propto \left(\frac{\delta\rho}{\rho}(\mathbf{k})\right)^2 \times \delta(\mathbf{k} + \mathbf{k}')$
flat spectrum $\langle \left(\frac{\delta\rho}{\rho}(\mathbf{x})\right)^2 \rangle = \int_0^\infty \frac{d\mathbf{k}}{\mathbf{k}} \mathscr{P}_S(\mathbf{k}) \qquad \mathscr{P}_S(\mathbf{k}) \approx \text{const}$
LSS and CMB $\mathscr{P}_S \equiv A_S \times \left(\frac{k}{k_*}\right)^{n_s - 1} \qquad A_S \approx 2.5 \times 10^{-9}, \quad n_S \approx 0.97$

100 1000 1000

Mode evolution

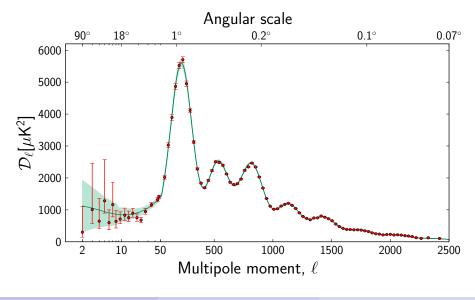
- Amplitude remains constant, while superhorizon, e.g. k/a < H
- Subhorizon Inhomogeneities of DM start to grow at MD-stage, $\delta \rho_{CDM} / \rho_{CDM} \propto a$ from $T \approx 0.8 \text{ eV}$ Smaller objects (first stars, dwarf galaxies) are first to form
- Subhorizon Inhomogeneities of baryons join those of DM only after recombination, $\delta \rho_{CDM} / \rho_{CDM} \propto a$ from $T_{rec} \approx 0.25 \text{ eV}$
- at recombination $\delta \rho_B / \rho_B \sim \delta T / T \sim 10^{-4}$ and would grow only by a factor $T_{rec} / T_0 \sim 10^3$ without DM
- Subhorizon Inhomogeneities of photons $\delta \rho_{\gamma} / \rho_{\gamma}$ oscillate with constant amplitude at RD and with decreasing amplitude at MD, thus we can measure $T_{RD/MD} / T_{rec}$
- Phase of oscillations decoupled after recombination depends on the wave-length, recombination time and sound speed

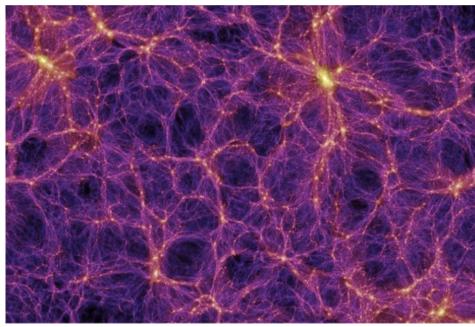
$$\delta \rho_{\gamma} / \rho_{\gamma} \propto \cos\left(k \int_{0}^{t_{r}} \frac{v_{s} dt}{a(t)}\right) = \cos(k I_{sound})$$

$$\delta T(\theta, \varphi) = \sum a_{lm} Y_{lm}(\theta, \varphi) , \qquad \langle a_{lm}^* a_{lm} \rangle = C_l \equiv 2\pi \mathscr{D}_l / (l(l+1))$$

Inhomogeneities in the Universe

CMB measurements (Planck) $H_0, \Omega_{DM}, \Omega_B, \Omega_\Lambda, \Delta_{\mathscr{R}}, n_s$





Dmitry Gorbunov (INR)

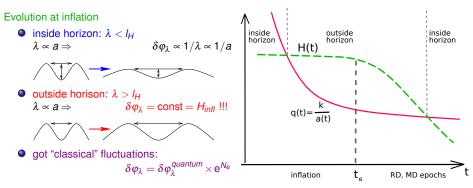
Inflation and reheating in the early Universe

01.03.2020, NW-2020 51 / 70

Unexpected bonus: generation of perturbations

- Quantum fluctuations of wavelength λ of a free massless field φ have an amplitude of $\delta \varphi_{\lambda} \simeq 1/\lambda$
- In the expanding Universe: $\lambda \propto a$

inflation: $I_H \sim 1/H = \text{const}$, so modes "exit horizon" Ordinary stage: $I_H \sim 1/H \propto t$, $I_H/\lambda \nearrow$, modes "enter horizon"



Inhomogeneities in the Universe

Power spectrum of perturbations

In the Minkowski space-time:

• fluctuations of a free quantum field φ are gaussian

its power spectrum is defined as

$$\int_{0}^{\infty} \frac{dq}{q} \mathscr{P}_{\varphi}(q) \equiv \langle \varphi^{2}(x) \rangle = \int_{0}^{\infty} \frac{dq}{q} \frac{q^{2}}{(2\pi)^{2}}$$

We define amplitude as $\delta arphi(q) \equiv \sqrt{\mathscr{P}_{arphi}} = q/(2\pi)$

- In the expanding Universe momenta q = k/a gets redshifted
- Cast the solution in terms $\phi(\mathbf{x},t) = \phi_c(t) + \phi(\mathbf{x},t)$, $\phi(\mathbf{x},t) \propto e^{\pm i\mathbf{k}\mathbf{x}} \phi(\mathbf{k},t)$

$$\ddot{\varphi} + 3H\dot{\varphi} + \frac{k^2}{a^2}\,\varphi + V''(\phi_c)\varphi = 0$$

- $q = k/a \gg H \Rightarrow$ as in Minkowski space-time
- $q = k/a \ll H \Rightarrow$ for inflaton $\varphi =$ const
- Matching at t_k : $q(t_k) = k/a(t_k) = H(t_k) \equiv H_k$ gives

$$\delta \varphi(q) = rac{H_k}{2\pi} \; \Rightarrow \; \mathscr{P}_{\varphi}(q) = rac{H_k^2}{(2\pi)^2}$$

amplification $H_k/q = e^{N_e(k)} !!!$

 $H_k \approx \text{const} = H_{infl}$ hence (almost) flat spectrum

Transfer to matter perturbations: simple models

Illustration: Local delay(advance) δt in evolution due to impact of $\delta \phi$ of all modes with $\lambda > H$:

 $\delta\phi = \dot{\phi}_c \,\delta t \,, \quad \delta
ho \sim \dot{
ho} \,\delta t$

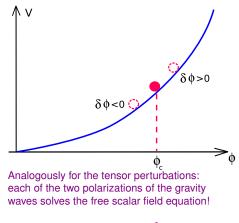
at the end of inflation $\dot{
ho} \sim - H
ho$, then

$$rac{\delta
ho}{
ho}\sim rac{H}{\dot{\phi}_c}\,\delta\phi$$

Hence, $\delta \rho / \rho$ is also gaussian. Power spectrum of scalar perturbations

$$\mathscr{P}_{\mathscr{R}}(k) = \left(\frac{H^2}{2\pi\dot{\phi}_c}\right)^2,$$

everything is calculated at $t = t_k : H = k/a$



$$\mathscr{P}_{T}(k) = \frac{16}{\pi} \frac{H_{k}^{2}}{M_{Pl}^{2}}$$

To the leading order no k-dependence: both spectra are "flat"

(scale-invariant)!

Inflation and reheating in the early Universe

Inflaton parameters and spectral parameters

• Observation of CMB anisotropy gives $\delta T/T$

$$\frac{\delta T}{T} \sim \frac{\delta \rho}{\rho} \;\; \Rightarrow \Delta_{\mathscr{R}} \equiv \sqrt{\mathscr{P}_{\mathscr{R}}} = 5 \times 10^{-5}$$

- These are so-called adiabatic perturbations! Other possibles (isocurvature) modes (e.g. $\delta T = 0$, but $\delta n_B/n_B \neq 0$) are not found.
- $\Delta_{\mathscr{R}} = 5 \times 10^{-5} \Rightarrow$ fixes model paramaters, e.g.:

$$V(\phi) = rac{eta}{4} \, \phi^4 o \lambda \sim 10^{-13}$$

With such a tiny coupling perturbations are obviously gaussian So far confirmed by observations

N

Inflation & Reheating: simple realization with Higgs

$$\ddot{X} + 3H\dot{X} + V'(X) = 0$$

 $X_e > M_{Pl}$

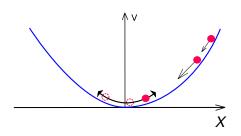
generation of scale-invariant scalar (and tensor) perturbations from exponentially stretched quantum fluctuations of X

 $\delta
ho /
ho \sim 10^{-5}$ requires $V = eta X^4 : eta \sim 10^{-13}$

reheating ? renormalizable?

the only choice:

 $\alpha H^{\dagger} H X^2$ "Higgs portal"



Chaotic inflation, A.Linde (1983)

larger α

larger T_{reh}

quantum corrections $\propto lpha^2 \lesssim eta$

Inflaton parameters and spectral parameters

In fact, spectra are a bit tilted, as H_{infl} slightly evolves

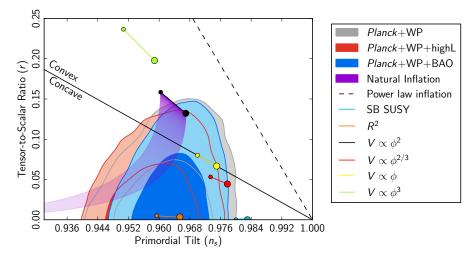
$$\mathscr{P}_{\mathscr{R}}(k) = A_{\mathscr{R}}\left(\frac{k}{k_*}\right)^{n_s-1}, \qquad \mathscr{P}_T(k) = A_T\left(\frac{k}{k_*}\right)^{n_T}$$

- Measure $\Delta_{\mathscr{R}}$ at present scales $q \simeq 0.002/Mpc$, it fixes the number of e-foldings left N_e
- For tensor perturbations one introduces:

$$r \equiv \frac{\mathscr{P}_T}{\mathscr{P}_{\mathscr{R}}} = \frac{1}{\pi} \frac{M_{Pl}^2 V'^2}{V} = 16\varepsilon \rightarrow \frac{16}{N_e} \text{ for } \beta \phi^4$$

.

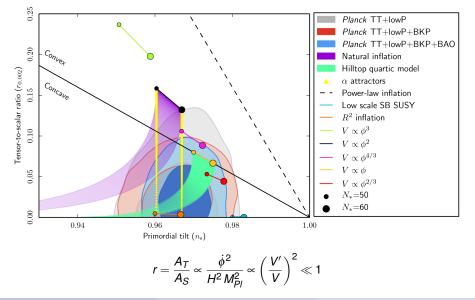
Planck analysis of cosmlogical data (2013)



1303.5062

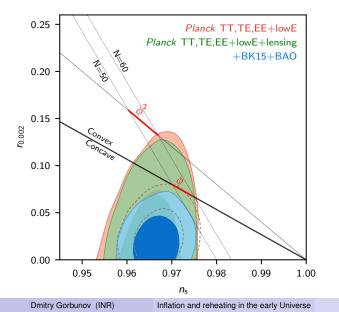
 $N_e = 50 - 60$

Planck (2015)

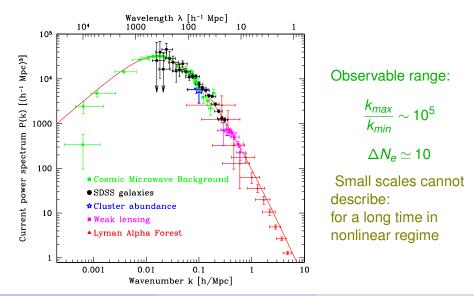


Inflation and reheating in the early Universe

Planck analysis of cosmlogical data (2018)



Actually we observe rather narrow range



Dmitry Gorbunov (INR)

General facts, key observables and ACDM model

- Pot Big Bang theory in brief
- Inflation
- Inhomogeneities in the Universe

After inflation we must produce particles to enter the radiation dominating stage i.e. we must reheat the Universe

• perturbative... e.g. decays:

 $\phi \rightarrow hh$, reheating at $H = \Gamma$

inflaton couples to SM

- through oscillations induced by inflaton time-dependent external force F(t) or mass m(t)
 — can be resonantly amplified !!
 - most efficient:

tachionic, when $m^2(t) < 0$

ЯN ИR

Particle production I

An elementary particle:

$$E = mc^2 \longrightarrow E^2 = k^2c^2 + m^2c^4$$

equation of motion

$$\ddot{\phi}(t,\mathbf{x}) - \Delta\phi(t,\mathbf{x}) + m^2\phi(t,\mathbf{x}) = 0 \qquad \phi \propto e^{iEt + i\mathbf{k}\mathbf{x}}$$

for particular 3-momenta looks as oscillator

$$\ddot{\phi}_k(t) + \left(\mathbf{k}^2 + m^2\right)\phi_k(t) = 0$$
 $\phi(t, \mathbf{x}) = \int d^3x \phi_k(t) \mathrm{e}^{i\mathbf{k}\mathbf{x}}$

Quantum physics:

even in vacuum (no particles)
$$\phi_k = \phi_k^{vac}(t) \neq 0$$
 !

Particle production II

In the expanding Universe

$$\ddot{\phi}_k(t) + 3H(t)\,\dot{\phi}_k(t) + \left(\frac{\mathbf{k}^2}{a^2(t)} + m^2\right)\phi_k(t) = 0$$

interaction with inflaton X(t), e.g. $X^2\phi^2$:

$$\ddot{\phi}_k(t) + 3H(t)\dot{\phi}_k(t) + \left(\frac{\mathbf{k}^2}{a^2(t)} + m^2 + X^2(t)\right)\phi_k(t) = 0$$

 $\begin{array}{ll} \mbox{oscillator with time-dependent frequency can be excited if} \\ \mbox{---} \ \Omega_X \gg \Omega_{\phi_k} & \mbox{high-frequency (this case)} \end{array}$

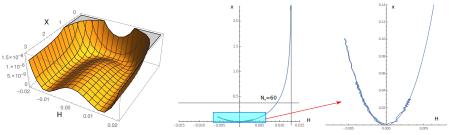
among other generic options

- at zero crossings, that is $\Omega_X^{eff} \simeq 0$
- at tachyonic time slots with $\Omega_{\chi}^{eff2} < 0$

large field X

R

Higgs & Scalaron



D.G., A.Tokareva 1807.02392

Scalar perturbations:

1701.07665

$$eta + rac{\xi^2}{\lambda} \simeq$$
 2 $imes$ 10⁹

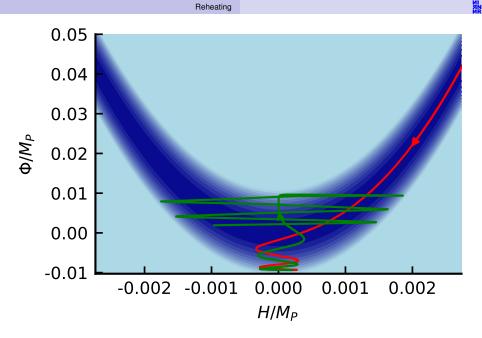
At small β like in the Higgs-inflation

heavy scalaron is integrated out

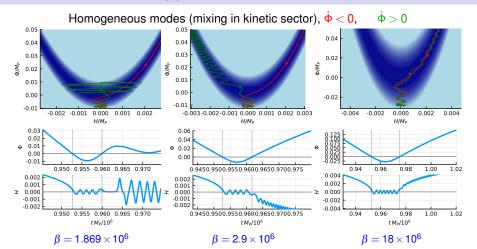
$$rac{\xi^2}{4\pi} < eta < rac{\xi^2}{\lambda} \quad o \quad 5 imes 10^{13} \, ext{GeV} < m < 1.5 imes 10^{15} \, ext{GeV}$$

Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe



Scalaron Φ and Higgs *H* evolution after inflation



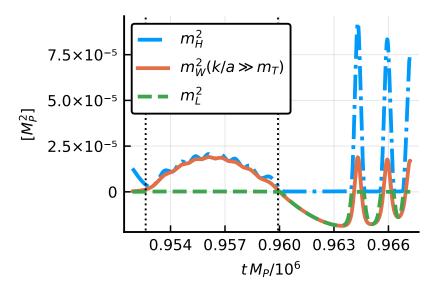
$$V(H,\Phi) = \frac{1}{4} \left(\lambda + \frac{\xi^2}{\beta} \right) H^4 + \frac{M_P^2}{6\beta} \Phi^2 - \frac{\xi M_P}{\sqrt{6\beta}} \Phi H^2 + \frac{7}{108\beta} \Phi^4 + \frac{\xi}{6\beta} \Phi^2 H^2 - \frac{M_P}{3\sqrt{6\beta}} \Phi^3$$

Dmitry Gorbunov (INR)

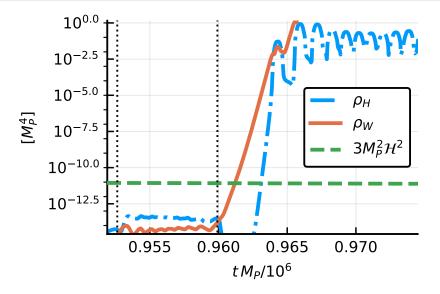
Inflation and reheating in the early Universe

01.03.2020, NW-2020 68 / 70

Numerical results: mass squared



Numerical results: energy in perturbations

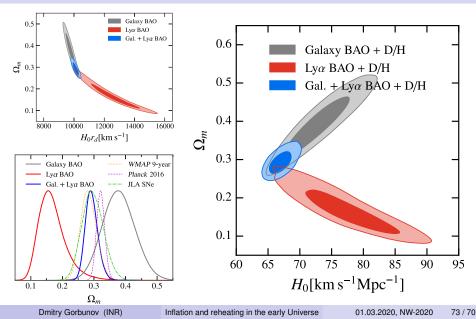


Backup slides

äk

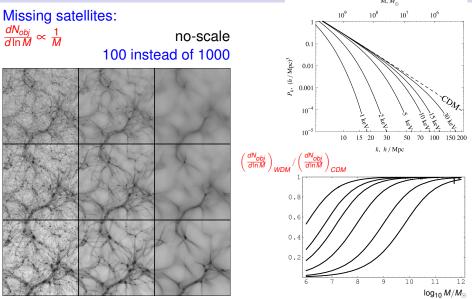
Impact of BAO: Galaxies vs Ly- α

1707.06547



船

Missing satellites: free streaming or selfinteraction?

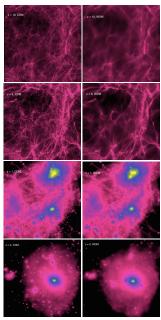


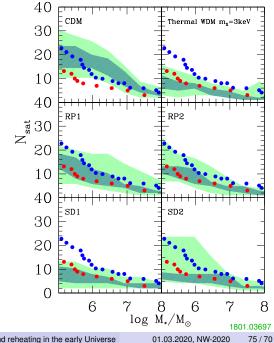
Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

01.03.2020, NW-2020 74 / 70

1801.03697 WDM $m = 3.3 \, \text{keV}$



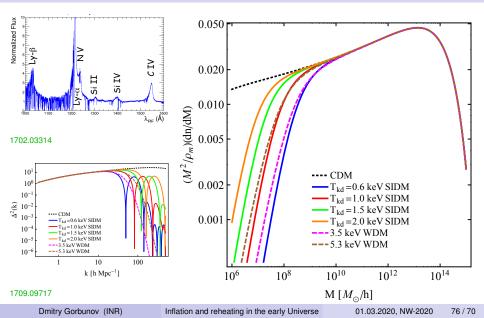


Dmitry Gorbunov (INR)

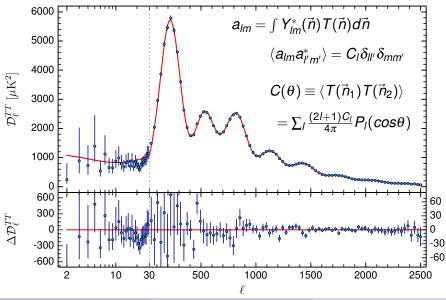
Inflation and reheating in the early Universe

瀫

Missing satellites: dwarfs vs Ly- α



CMB anisotropy spectrum by Planck



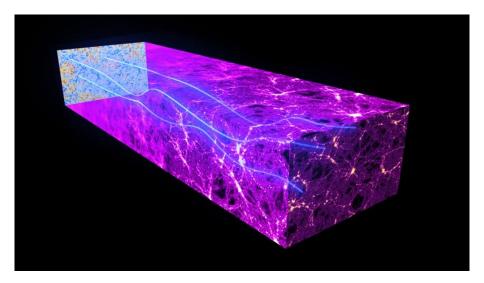
Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

1502.01582

船

Initial or Induced: propagation in expanding Universe



Dmitry Gorbunov (INR)

Inflation and reheating in the early Universe

01.03.2020, NW-2020 78 / 70

Cold spot (Planck)

1502.01582

ЯN

