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3 Forms of Dynamics

Chaos “is concentrated” on
fractal invariant sets

Chaos “spread” over
the phase space

Chaos is both “spread” and
“concentrated”
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|) Conservative (Hamiltonian) Chaos

Chaos “spread” over the phase space: elliptic islands are
totally replaced with non-uniform hyperbolicity

H. Poincare (1893) — the 'oldest' type
of dynamical chaos Poincare homoclinic orbit

Jules Henri Poincare
French mathematician, physicist, astronomer
and science theorist

April 29, 1854 - July 17, 1912



George David Birkhoff Jacques Hadamard
(21.03.1884 — 12.11.1944) (8.12.1865 — 17.10.1963)

American mathematician, best French mathematician and mechanic.
known for his work on statistical The author of many fundamental works
mechanics and ergodic theory. in algebra, geometry, functional
analysis, differential geometry,
mathematical physics, topology, theory
probabilities, mechanics, hydrodynamics, etc.
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A.N. Kolmogorov V.I. Arnol’'d
(25.04.1903 — 20.10.1987) (12.06.1937 — 03.06.2010) (04.07.1928 — 17.12.1999)

The Kolmogorov—Arnold—Moser theory, or KAM theory — named after its creators,
A. N. Kolmogorov, V. I. Arnold, and J. Moser, relates to a branch of the theory

of dynamical systems that studies small perturbations of almost periodic dynamics
in Hamiltonian systems and related topics - in particular, in dynamics of symplectic
mappings. Its main theorem, the Kolmogorov—Arnold—Moser theorem,

or KAM-theorem says about the preservation of majority of invariant tori in phase
space when small perturbations of integrable Hamiltonian systems.



1) Dissipative

Alexandr Alexandrovich

Andronov (1901—
1952)

Soviet physicist,
mechanic

and mathematician,
Academician of the
USSR

Academy of Sciences.
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Lev Semenovich

Pontryagin (1908-
1988)

Soviet mathematician,
one of the greatest
mathematicians of the
20th century,
Academician
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Poincare-Birkhoff problem:
to give a description of orbits entirely lying in a neighbourhood
of a transverse Poincare homoclinic orbit

S. Smale D.V. Anosov .P. Shilnikov
(born 15.07.1930) (30.11.1936 — 05.08.2014)  (17.12.1934 - 26.12.2011)



Genuine SA: all orbits have a positive
maximal Lyapunov exponent
ex.: hyperbolic SA, the Lorenz SA,
Il) Strange pseudohyperbolic SA (Lecture 2)

attractors

Quasiattractors: some orbits in D have
maximal L-exp equal 0

(coexisting SA-behavior with stable reqular
one (e.g. per. sinks) windows of
stability in the parameter space.

E.Lorenz (1963); ‘Edward Norton Lorenz —

(23.05.1917 — 16.04.2008)

@/ American mathematician and
I\ ﬁ,x*’J meteorologist, one of the

Pl 7 founders
J of chaos theory, the author of
the expression "butterfly effect",
as well as the creator of
the Lorenz attractor

mi
.l
il

§ R

r

1]
|

£

o '-«.__._ ._.-"
a5 et

Lorenz attractor




C.K. Conley
(26.09.1933 — 20.11.1984)

American mathematician.
He made a significant
contribution to the theory
of DS (Conley index,
Conley's theorem —

“the main theorem of DS,
etc.)

D. Ruelle
(born: 20.08.1935)

Belgian mathematician
and physicist working in
areas of statistical physics
and theory of dynamics
systems.

F. Takens
(1940 - 2010)

Dutch mathematician.
He made a significant
contribution to the theory
of dynamical systems,
chaos theory,

fluid mechanics



Why can an Attractor intersect with a Repeller if (by
definition) they can never intersect?

Simple example:

Absorbing domains

Repelling domains

Main question: \What is attractor (repeller) ?

We (all) want the attractor to be a closed and stable
invariant set



There are many different definitions of attractor. For example.

Maximal attractor: A, = m " (D

Milnor attractor: a closed invariant and minimal by embedding set
in D that contains w-limit points of forward orbits of almost all

(Lebesque mes 1) of points from D.
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(d)

AM is not topological




Definition 1. Letf: M — M be a map Y;,4 = f(Y,).

Asequence {X,}, ,n €Z, iscallorbit,if X ., = f(X,),

g-orbit | ifp(X ., (X)) < €]

Definition 2. We will call a point y @attainable from a point x if for any € > 0

there exist an €-orbit which starts at x and ends at y.

Definition 3. A closed invariant set $B$ is called chain-transitive, if
every point

of $B$ is attainable from any other point of $B$.



Definition 4. A closed invariant set $B$ is called g-stable if for every
open neighborhood U(B) there exists a neighborhood V/(B) such that, for
all sufficiently small €>0, the e-orbits which start in V(B) never leave U(B).

For any definition of attractor, we should consider it as
a closed, stable and _invariant set !

Stability — under permanently acting perturbations
(total stability or g-stability)

CRH-attractor (Conley-Ruelle-Hurley attractor) is
a chain-transitive, stable (in fact, e-stable), closed,

invariant set




Definition 5. A chain-transitive, stable (in fact, e-stable),

closed, invariant set A, (a CRH-attractor)is called attractor

of a point x if every point of A4. is attainable from x.
Aset R_is a repeller of a point x if it is an attractor

of x for the inverse map .

Theorem ([GT17]). Let xin A_ N R _.
Then A_= R

X x °




Note that a point x can have several attractors. Fhalay
If the number # of such attractors is finite, then their union AN
is the full attractor of x. If # is infinite, the full attractoris <" A.lo

the closure of union of all attractors of x.

This is a closed invariant set A(x) but not always stable! u &ﬁ h b
Minimal by embedding and stable set containing A(x) is i
prolongation of A(x), i.e. the set of attainable from A(x)

points for any arbitrary small €. We call this set full Ruelle attractor of x.

Definition 6. The full attractor of map fis the closure of
union of all CRH-attractors of its points, and the full Ruelle

attractor of fis the prolongation of its full attractor.

EX. FA is a union of inf. many
sinks and O.

FRA is a union of FA with

the arc S.




(Topologically) conservative dynamics.

A =R =M for any point x

Examples: 1) Hamiltonian systems;

2) Anosov diffeomorphisms

3) A circle map with a saddle-node
4) exotic example (by S.Minkov)
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Mixed dynamics (reversible core).

absorbing domains
PN
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Mixed dynamics (reversible core).

Conservative Generic elliptic point for reversible map
elliptic point



RC=0 — Mixed dynamics

R-attractor

R-repelle

b)

b) phenomenon observed before (“the conservative chaos coexists with
the dissipative behavior”) c¢) a new phenomenon



Attractor and repeller merger

Figure 1: Examples of attractor-repeller merger for the Poincaré map of (a),(b) a model
of the Celtic stone, [5], and (c),(d) Chaplygin ball (rubber body), [6]. Here, the numerically
obtained attractor (A) and repeller (R) are shown for different values of the energy of the

system.



Example of mixed dynamics of dissipative type
(from a paper by A.Kazakov, CHAOS, 2020 )

Fix(h)

11.5

0 ”n

FIG. 7. An illustration for strongly dissipative mixed dynamics af-
ter the merger of all eight Hénon-like attractors AH; and repellers

RH; i = 1,...8 at . The attractor is presented in blue color, the re-
peller — in red.



Example 3:
Pikovskii-Topaj model of 4 coupled rotators

In [A.Pikovskii, D.Topaj , 2002] was considered the following model of
symmetrically coupled 4 rotators whose frequencies differ on 1

iy =1 —2zs81m 1y + £sin iy
o =1 — 2e8in 1y + £8inyy + £8in’s (1)
g3 = 1 — 2es8in 1y + £sin s,

where v; € [0,27),i = 1,2, 3, are cyclic variables. Thus, the phase space of
(1) is the three-dimensional torus T®. Note that system (1) is reversible with
respect to the involution R:

P =T =y, =T — e, by — T — 1, (2)

(i.e. equations (1) are invariant under the coordinate change (2) and time
reversal t — —t).



Phase portraits of Poincare map T(e) for small &,
(@) and (b), and for T(¢) (c) and T(¢)1 (d) when ¢ is

not quite small

¢ -n2 () 2 (dy -wm2 W Ix2



[A.Gonchenko, S.Gonchenko, A.Kazakov, D.Turaev — Physica D, 2017]

Let us consider system Eq. (1). By means of the coordinate
change

Vi — V3 ‘!f3 it Ys—m
§=—F— n = > ;
_ (3)
:‘11'/14‘313 JTJHJJ;—H’,

the system is brought to the following form

é = 2¢siné sinn,
n=1-—e¢ecos(p —n) — 2¢ecos& cosn, (4)
p=2+¢ecos(p—n).



After the time change dtpew = (2 + £ cos(p — n))dt system (4)

recasts as

. 2esiné sinn

5 = 2+¢ecos(p —n)’

. 1—ecos(p—mn)— 2ecos§cos
]?_ 2+ ecos(p —n) ’
p=1,

1.e., a non-autonomous time-periodic system

. 2esiné sinn

5= 2+ ecos(t —n)’

. 1—egcos(t —n)—2ecos§ cosn
S 2 + gcos(t — n) '

Note that system (5) is well-defined for all £ < 2.

(3)
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Example 3: (First ex. of general (non-reversible) system)
Emelyanova-Nekorkin of oscillators with adaptive
couplings (CHAOS, 2019)
We consider a system of two phase oscillators interacting by

adaptive couplings, where the dynamics of the phases {¢; (t), p.(t)}
and the coupling weights {«,(t), k,(t)} are given by

dt’,{?] :
—— =, —k; sin(g; — @, + @),
dt
d :
% = () — K3 511'1(902 — ¢ + H)ﬁ
(1)
dﬁf] i
= —e (sin(¢; — @2 + B) + k1),
df('z .
= = —& (sin(p; — @1 + P) + k2),

where (¢1,9,) € S, (k1,k2) € R2.



The parameter @ (0 < @ < ) characterizes the delay in signal
transmission from one oscillator to another. The adaptivity rule is
controlled by the parameter B (0 < B < 2x), which allows one to
interpolate between the different adaptation modalities. In this paper,
we focus on the parameter area that corresponds to the anti-Hebbian
rule of adaptivity;” that is, the values of the coupling coefhicients
decrease if the phase difference of the oscillators is close to zero and
increase if it is close to +=7. The parameter ¢ (¢ < 1) defines the
scale separation between the fast dynamics of the phases and the slow
dynamics of adaptation. The parameter y = w; — w, characterizes
the detuning of the natural frequencies of oscillators.

0.0 ¥



Heteroclinic cycles and intersection of
attractor and repeller

- Newhouse region is an open (in C'-topology, r > 2) region NR where
systems with homoclinic tangencies are dense

Newhouse Theorem. NR s exist in any neighbourho od of any system
with homoclinic tangency.

Proofs ine [Newhouse-79] - for dim 2; [GST-93] - for any dimension
(also in [PalisViana-94], [Romero-95]).

Definition. A Newhouse region NRmix  is called NR with mixed
dynamics, if systems with mixed dynamics are dense (generic!) in it.

(They are called also Absolute Newhouse Regions)

Theorem (GST97,GST99,GSTO7).

Letf € NRmix have a closed uniformly hyperbolic invariant set A.
Then the following property is generic
Closure(sinks) n Closure(sources) D A\



Regions NRmix exist
In particular, it was proved in

[1] Gonchenko, Turaev, Shilnikov Proc. Steklov Inst. Math. , 1997, v.216

that INRmix exist near two-dimensional diffeomorphisms
with nontransversal heteroclinic cycles containing at least two saddle
periodic orbits 01 and 02 such that
J(O,) <1and J(O,) > 1
where J(O ) is the | acobian of the map at the point O.




Necessary conditions for mixed dynamics.

«Both Volume contraction and expansion
(Sign alternating divergence)

« Complicated dynamics (Newhouse region)
« Absence of the partial hyperbolicity.

This type of dynamics can exist in any dimension (Turaev,1996).




Some results for dimension 3.

(a) b)

Wll(ol) Wll(oz)

W'(0,)

It established in [GST09] and [GonOvsyannikov10],

bifurcations of such heteroclinic cycles can produce Lorenz-like attractors.
Moreover, Lorenz-like repellers can be also bom here, [GonOvsTatjerl3].

It leads to mixed dynamics involving infinitely many periodic attractors

and repellers, saddles with dim Ws=1, 2, stable and unstable invariant circles
and strange attractors and repellers.



llla) Reversible Mixed Dynamics

D s TCIC0A traCtOr A criterium of RMD
Infinitely many couples
“sink-source” +
“saddle(J<1)"-saddle(J>1) +
symmetric saddles(J=1) +
symmetric elliptic per. orbits.

(2.00383,

3ameyvaHue: Ecnn dim Fix(R) = n-1

A map fis reversible if f=R~'f' R, where R is usually
an involution, i.e R?=1d. Thus,f=R 1 R




Ill) Mixed Dynamics

MD as a dynamical phenomenon!

Df of MD: (ogHo 13...)
1) coexistence of inf. many per.

sinks, sourses, saddles:

2) the closures of the sets of
these orbits is not empty.

MD as the third form of dynamical chaos!

ANR=RC#D
A# R




Main property: “Attractor” intersects with “Repeller”
by a “Reversible Core” that is not empty

Moreover, RC should be quite big due to the
“homoclinic tangle”.

A = RC + dissipative structures (small sinks, SA etc)
R = RC + repelling structures (small sources, strange
repellers etc)

Thus, A and R are different, but, usually, they almost

coincide (completely coincide in the conservative case,
completely different in the dissipative dynamics ).

Main question: \What is attractor (repeller) ?



Reversible Mixed Dynamics maps.

First, it can be viewed as an universal phenomenon for reversible
two-dimensional maps with complicated dynamics.
1) The contracting-expanding heteroclinic cycles are rather usual
for reversible, maps (see Fig. ). the map has a symmetric couple of saddle
fixed points 01 and 02 and it is typically (general condition) when
J(01) = J1(02) < 1.
Thus, the phenomenon of RMD
s related here to
([Lamb,Stenkin20041])

* the coexistence of infinitely
many attracting, repelling,
saddle and elliptic p.o.




It seems to be true that the phenomenon of mixed dynamics is universal

for reversible (two-dimensional) maps with complicated
dynamics when symmetric homoclinic and heteroclinic orbits are involved.

The latter can be formulated as the following [Delshams et al 2013]
» Reversible Mixed Dynamics Conjecture.

Reversible maps with mixed dynamics are generic in Newhouse regions of
reversible maps in which there are dense maps with symme tric
homoclinic tangencies or/and a couple of heteroclinic tangencies

This conjecture is true when NR in the space of C'reversible systems are
considered [GonLambRiosTuraev2014]. However, it is widely open for
analytical case and for parameter families



Now RMD-conjecture for 1-parameter A e
. priori

unfoldings has been proved for two more conservetive
cases. case

1) an initial reversible map has 2 -
symmetric saddles and a symmetric
couple of nontransversal heteroclinic orbits

[Delshams et al 2013] and

2) an initial reversible map has a A priori non-
symmetric couple of homoclinic tangencig conservetive
to a symmetric saddle [Delshams et al case

2015]

However, the most interesting cases
relate to the reversible maps having a

symmetric saddle and a symmetric

homoclinic homoclinic tangency, quadratic

(a) or cubic (b). Both these case are “a _ /
priori conservative”, and a structure of

global symmetry breaking

bifurcations is notclear. (a) (b)



Evidently, there are many various similar
configurations such as
homoclinic chains of periodic orbits (a) or
(b) resonant zones surrounding elliptic
points etc.

The simplest cases are collected in Fig.4 (a) (b)

_____




(zeneric reversible cores in two-dimensional
reversible maps

Theorem 3. All symmetric elliptic periodic orbits of a C" -generic two-
dimenstonal g-reversible map are reversible cores.

g is an involution such that dim Fix(g) =1




Geometrical idea of the proof

Figure 7: (a) Boundaries of absorbing domains for system (14) and its inverse (for
t — —t). The domains with boundaries B, and B, contain, respectively, the attractor
M, and the repeller M. and the upper part of the cylinder. The domains with boundaries
B,_ and B,_ contain, respectively, M, and M, and the lower part of the cylinder. (b) A
pair of absorbing domains with boundaries B, and B, around the point z = 0 (for system

(8) and for its time reversal).



Example: The periodically forced Duffing equation
X =y, -y =-—x +x° +ela +py sin wi)

It is reversible with respect to the change
X=X,y —> yt——

As the perturbation term contain y (friction) the Poincare map is
not typically conservative



Reversible mixed dynamics is very universal thing.
It takes place even near elliptic points of reversible maps.Thus,
by [Gonchenko,Lamb, Rios,Turaev, 2014], it is genrically that

* symmetric elliptic periodic orbit is a limit of sinks, sources and
other elliptic points;

* symmetric elliptic periodic orbit is accumulated by symmetric
Wild-hyperbolic (Newhouse) sets;

* every point of each KAM-curve is a limit of sinks and sources.



Example 2:
A nonholonomic model of a Celtic stone

stable rotation unstable rotation
| |
| |

| R . |

point of contact




Examples of the Celtic stone chaotic dynamics

H/G

H/G
(Om,1,1) = A

(2.003837,1,1)

-

(2.003837, —1,1)

Spiral attractor
/

_1)
(2.003837, 15
(27,1, ~1)
(0.00383143m,1,—1)
_ . (2m-1.1) " Chaotic tori
H/G
Mixed dynamics (m,1,1) o~ (0m,1,1)

/
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Balthasar van der Pol AnekcaHnap Muxannosud JlanyHOB
27.01.1889 — 6.10.1959 — PYCCKUU MareMaTuK N MexXaHuK.
Dutch Mathematics and Physicist

6.06.1857 — 3.11.1918
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