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Two‐dimensional materials

are the platform for van der Waals heterostructures
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Van der Waals heterostructures
A. K. Geim1,2 & I. V. Grigorieva1

Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading
topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The
first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been
fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging
research area and identify possible future directions. With steady improvement in fabrication techniques and using
graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

G raphene research has evolved into a vast field with approxi-
mately ten thousand papers now being published every year
on a wide range of graphene-related topics. Each topic is covered

by many reviews. It is probably fair to say that research on ‘simple
graphene’ has already passed its zenith. Indeed, the focus has shifted
from studying graphene itself to the use of the material in applications1

and as a versatile platform for investigation of various phenomena.
Nonetheless, the fundamental science of graphene remains far from
being exhausted (especially in terms of many-body physics) and, as
the quality of graphene devices continues to improve2–5, more break-
throughs are expected, although at a slower pace.

Because most of the ‘low-hanging graphene fruits’ have already been
harvested, researchers have now started paying more attention to other
two-dimensional (2D) atomic crystals6 such as isolated monolayers and
few-layer crystals of hexagonal boron nitride (hBN), molybdenum
disulphide (MoS2), other dichalcogenides and layered oxides. During
the first five years of the graphene boom, there appeared only a few

experimental papers on 2D crystals other than graphene, whereas the
last two years have already seen many reviews (for example, refs 7–11).
This research promises to reach the same intensity as that on graphene,
especially if the electronic quality of 2D crystals such as MoS2 (refs 12, 13)
can be improved by a factor of ten to a hundred.

In parallel with the efforts on graphene-like materials, another
research field has recently emerged and has been gaining strength over
the past two years. It deals with heterostructures and devices made by
stacking different 2D crystals on top of each other. The basic principle is
simple: take, for example, a monolayer, put it on top of another mono-
layer or few-layer crystal, add another 2D crystal and so on. The resulting
stack represents an artificial material assembled in a chosen sequence—as
in building with Lego—with blocks defined with one-atomic-plane pre-
cision (Fig. 1). Strong covalent bonds provide in-plane stability of 2D
crystals, whereas relatively weak, van-der-Waals-like forces are sufficient
to keep the stack together. The possibility of making multilayer van
der Waals heterostructures has been demonstrated experimentally only
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Figure 1 | Building van der Waals
heterostructures. If one considers
2D crystals to be analogous to Lego
blocks (right panel), the construction
of a huge variety of layered structures
becomes possible. Conceptually, this
atomic-scale Lego resembles
molecular beam epitaxy but employs
different ‘construction’ rules and a
distinct set of materials.
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Transition metal dichalcogenides

Bulk materials are indirect-gap semiconductors

Monolayers are direct-gap semiconductors
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Direct and inverse lattices of MX2

M X

(b)

(a)

(c)

Brillouin zone

MoS2, MoSe2, WS2, WSe2, …

D3h point symmetry: horizontal reflection plane (σh), three‐fold
rotation axes (C3, S3), 3C2, 2σv
no space inversion: SO‐splitting, second harmonic generation

Hexagonal Brillouin zone, direct band gaps are formed at the
K+ and K− edges

Valley symmetry is C3h; valleys are chiral

K+ and K− valleys are related by the time reversal symmetry

Heff = h̄v(σ · k) +
Eg

2
σz
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Band structure & selection rules

Mo‐based
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Excitons in atom‐thin semiconductors

In the k space, the exciton wave function ΨX can be
presented as (Bir and Pikus, 1974; Glazov et al., 2015)

ΨX ¼
X

e;h

CXðke; khÞje; hi; ð1Þ

where the correlation of the electron and hole in the exciton is
described by a coherent, i.e., phase-locked, superposition of
electron and hole states (jei¼ jse;τe;kei and jhi¼ jsh;τh;khi)
around the respective extrema of the bands. Relative con-
tributions of these states to the exciton are described by the
expansion coefficients CX, which are usually determined from
the effective two-particle Schrödinger or Bethe-Salpeter
equation. Their values are schematically represented by the
size of the filled area in Fig. 2(c), with the results of an explicit
calculation shown in the inset of Fig. 2(b) for electrons in
monolayer MoS2. As a consequence of the large binding
energy of excitons and their small Bohr radius in real space
(aB ≃ 1 nm), the spread of the exciton in k space is significant.
Therefore states farther away from the K-point band extrema
[see the inset in Fig. 2(b)] are included in the exciton wave
function (Qiu, da Jornada, and Louie, 2013; Wang, Gerber
et al., 2015).
As previously noted, the correlation represented in Eq. (1)

is strictly related to the relative motion of the carriers. In
contrast, the exciton center of mass can propagate freely in the

plane of the material, in accordance with the Bloch theorem.
The resulting exciton states X ¼ fKexc; se; τe; sh; τh; ðn; m Þg
are labeled by the center-of-mass wave vector Kexc, electron
and hole spin and valley indices se, τe, sh, τh, and the relative
motion labels ðn; m Þ. The relative motion states can be labeled
by the principal and magnetic quantum number as ðn; m Þ,
with n ¼ 1; 2; 3;… a natural number, m ∈ Z, and jm j < n.
To choose a notation similar to the hydrogen atom for
s, p, d states, we use here ðn; 0Þ ¼ ns where n ∈ N and
ðn;$1Þ ¼ ðnp;$1Þ for n > 1, ðn;$2Þ ¼ ðnd;$2Þ for n > 2,
etc.; the precise symmetry of excitonic states is discussed in
Sec. II.C.
In particular, the principal quantum number n is the primary

determinant of the respective binding energy, with the result-
ing series of the ground state (n ¼ 1) and excited states
(n > 1) of Wannier-Mott excitons roughly resembling the
physics of the hydrogen atom, as represented by the energy
level scheme in Fig. 2(d). The selection rules for optical
transitions are determined by the symmetry of the excitonic
wave functions, particularly, by the set of the spin and valley
indices se;h and τe;h and the magnetic quantum number m .
These quantities are of particular importance for the sub-
division of the excitons into so-called bright states, or
optically active, and dark states, i.e., forbidden in a single-
photon absorption process, as discussed in the following
sections.

ke

Ee

kh = -ke

Eh

x

y

(a)
Exciton

Free to move 
through the 
crystal

(c)

CB

VB

Exciton in 
momentum 
space

(d)

Energy

O
pt

ic
al

 a
bs

or
pt

io
n

n = 2

n = 1

n = 3
…

Free 
particle
bandgap

Exciton
states

Optical bandgap

EB

(b)

K+K-

K-

K-

K+

K+

0

w/o. Coulomb 
enhancement

n = 1

vac.

EB
n = 2
…

FP

E

FIG. 2. (a) Schematic real-space representation of the electron-hole pair bound in a Wannier-Mott exciton showing the strong spatial
correlation of the two constituents. The arrow indicates the center-of-mass wave vector responsible for the motion of the exciton as a
whole. (b) A typical exciton wave function calculated for monolayer MoS2. The modulus squared of the electron wave function is
plotted in color scale for the hole position fixed at the origin. The inset shows the corresponding wave function in momentum space
across the Brillouin zone, including both Kþ and K− exciton states. From Qiu, da Jornada, and Louie, 2013. (c) Representation of the
exciton in reciprocal space with the contributions of the electron and hole quasiparticles in the conduction (CB) and valence (VB) bands,
respectively, shown schematically by the widths of the shaded areas. (d) Schematic illustration of the optical absorption of an ideal 2D
semiconductor including the series of bright exciton transitions below the renormalized quasiparticle band gap. In addition, the Coulomb
interaction leads to the enhancement of the continuum absorption in the energy range exceeding EB, the exciton binding energy. The
inset shows the atomlike energy level scheme of the exciton states, designated by their principal quantum number n, with the binding
energy of the exciton ground state (n ¼ 1) denoted by EB below the free-particle (FP) band gap.

Gang Wang et al.: Colloquium: Excitons in atomically thin …
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Transport & optical effects
Velocity: δv(t) = δv(0)e−t/τp

Velocity fluctuations:

⟨δvx(t)δvx(0)⟩ =
v2

T
2

e−|t|/τp (2D)

Diffusion coefficient

D =
∫ ∞

0
⟨δvx(t)δvx(0)⟩dt =

v2
Tτp
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Phys. Rev. Materials 2, 011001(R) (2018)

Prospects: solar energy harvesting
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Excitons in optics and transport

Energy

Op
tic

al
 a

bs
or

pt
io

n

optical gap

quasi-particle 
band gap

Exciton

electron 
donor

hole 
acceptor

� Multi-exciton generation
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Exciton diffusion: experimental puzzles

Phys. Rev. Lett. 120, 207401 (2018)

Optical access to transport phenomena

Exciton diffusion is observed

Most of excitons are dark
(K > ω/c; indirect; spin‐valley forbidden)
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Exciton diffusion: experimental puzzles

Phys. Rev. Lett. 120, 207401 (2018)

Experiment: enhancement of exciton
diffusion coefficient and halo formation at
the density increase
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Increase of effective diffusion coefficient: Auger effect

Experiment & Numerics:

Energy density per pulse (nJ/cm2)

Exciton density (1/cm2)
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Ansatz solution

n(ρ, t) =
N(t)
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− ρ2

r2
0 + 4De f f t

)
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Phys. Rev. Lett. 120, 207401 (2018)
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Encapsulation effect

Suppression of Auger recombination effect⇒ weaker increase of De f f (N)
arXiv:1911.02909 (2019)
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Excitonic halos: memory and heating effects

26

Memory effects: a case study
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Excitonic halos: memory and heating effects

Encapsulated Non‐encapsulated
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Hot spot: non‐equilibrium phonons

TMD ML
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Efficient Auger recombination
Large energy release
Excitation of non‐equilibrium phonons

Phonons propagate out of the hot spot and drag
excitons⇒ halo‐like pattern is formed

Drift‐diffusion model

∂n
∂t

+∇ · j +
n
τ
+ RAn2 = 0,

j = −D∇n +
τp

m
F(ρ)n

F = Fphonons + FSeebeck
Phys. Rev. B 100, 045426 (2019)
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Phonon wind effect
Low temperatures, ballistic phonons

Pump pulse creates hot spot
ballistic phonons
momentum flux

⇒ phonon wind

Phonons drag excitons away
Keldysh (1976); Zinov’ev, Ivanov, Kozub, Yaroshetskii (1983)

Bulatov, Tikhodeev (1992)

Force field produced by phonons (2D)
can be found from the kinetic equation

Exciton distribution function fk:

∂ fk

∂t
+ vk

∂ fk

∂r
+

fk − f̄k

τp
= − fk

τd
+ gk

+Qexc−ph{ fk}

At fk ≪ 1, and high phonon occupancies Nq ≫ 1

Qexc−ph{ fk} =
2π

h̄ ∑
q
|Mq|2( fk+q − fk)×

[Nqδ(Ek+q −Ek − h̄Ωq)+ N−qδ(Ek+q −Ek + h̄Ωq)]
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Phonon wind effect
Low temperatures, ballistic phonons

Pump pulse creates hot spot
ballistic phonons
momentum flux

⇒ phonon wind

Phonons drag excitons away
Keldysh (1976); Zinov’ev, Ivanov, Kozub, Yaroshetskii (1983)

Bulatov, Tikhodeev (1992)

Force field produced by phonons (2D)

Fwind(ρ) =
U
ρ

ρ

ρ

Hot spot acts as a repulsive center
effective “Coulomb” repulsion

Cloud expansion ρ(t) ≈
√

Ut
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Phonon drag and Seebeck effects

High temperatures, diffusive phonons
Temperature gradients of lattice and of excitons are formed

Fdrag = −
τp

τx
kB∇Tlatt, FSeebeck = −kB∇Texc

Phonon drag scenario:

Small temperature gradient Large temperature gradient

Phys. Rev. B 100, 045426 (2019); for Seebeck effect: Perea‐Causin et al. Nano Lett. 19, 7317 (2019)
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Phonon wind vs. phonon drag

Phonon wind
Phonons propagate ballistically

Fwind(ρ) =
U
ρ

ρ

ρ

These bluestripe snapper are schooling. They are all swimming in the

same direction in a coordinated way.

Phonon drag
Phonons propagate diffusively

Fdrag(ρ) = ∇ρ
Θ

4πκt
exp

(
− ρ2

4κt

)

These surgeonfish are shoaling. They are swimming somewhat

independently, but in such a way that they stay connected.
en.wikipedia.org
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Какие механизмы определяют коэффициент диффузии экситонов?
Всегда ли применимо квазиклассическое описание?
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Applicability of the quasi‐classical description of exciton transport

Non‐degenerate excitons

ℓ ≫ λ ⇒ kBTτ

h̄
≫ 1

Diffusion coefficient

D =

〈
v2τ

2

〉
=

kBTτ

M
≫ h̄

M
∼ 1 cm2/s,

otherwise quantum effects play role

A B

LA‐phonon scattering in MX2 MLs

τ =
Ms2

kBT
τ0, τ−1

0 =
M2(Ξc − Ξv)2

ρh̄3 ⇒ D = s2τ0 ∼ 1 cm2/s

In this mechanism D is temperature independent
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ℓ ≫ λ ⇒ kBTτ
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Diffusion coefficient

D =

〈
v2τ

2

〉
=

kBTτ

M
≫ h̄

M
∼ 1 cm2/s,

otherwise quantum effects play role

A B

Our goal
is to study the lowest order corrections in the parameter h̄/(kBTτ) ≪ 1.
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A B

P(A → B) =

∣∣∣∣∣∑i
Ai

∣∣∣∣∣
2

, Ai = |Ai| exp (iϕi)

ϕi =
∫

i
k · dl, |ϕi − ϕj| ≳ kℓ ∼ ℓ

λ
≫ 1 ⇒ P(A → B) = ∑

i
Pi (?)
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Applicability of the quasi‐classical description of exciton transport

Non‐degenerate excitons

ℓ ≫ λ ⇒ kBTτ

h̄
≫ 1

Diffusion coefficient

D =

〈
v2τ

2

〉
=

kBTτ

M
≫ h̄

M
∼ 1 cm2/s,

otherwise quantum effects play role

A B

Self‐intersecting trajectory:

ϕ⟳ = ϕ⟲

Constructive interference⇒ localization
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Exciton weak localization

arXiv:1911.10528 (2019)

kBT ≫ Ms2 ∼ 1 K Quasi‐elastic LA‐phonon scattering
(a)

A B

(b)

(c)

δD
D

∼ −
∫ τϕ

τ

vTλdt
Dt

∼ − h̄
kBTτ

ln
(τϕ

τ

)
Exciton weak localization: Ivchenko, Pikus, Razbirin, Starukhin (1977), Arseev, Dzyubenko (1998)
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Time scales

Quasielasticity:
∆ϵ ∼

√
kBTMs2 ≪ kBT ⇒ δϵ2(t) ∼ (∆ϵ)2 t

τ

Momentum relaxation time

τ =
Ms2

kBT
τ0, τ−1

0 =
M2(Ξc − Ξv)2

ρh̄3

Energy relaxation time

δϵ(τϵ) ∼ kBT ⇒ τϵ =
τ0

2
≫ τ

Phase relaxation time

δϵ(τϕ) ∼
h̄
τϕ

⇒ τϕ ∼
[

h̄2τ0

(kBT)2

]1/3

⇒
τϕ

τ
∝ T1/3

Quantum effects become more pronounced with the temperature increase
Golubentsev (1984); Afonin, Galperin, Gurevich (1985); Adams, Paalanen (1987); Stephen (1987); Dyakonov, Kopelevich (1988)
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Dephasing due to phonon propagation

A B

Cϕ = ∏
i

exp
{

i
∆pi

h̄
[r(ti)− r(−ti)]

}

∼ exp
{
−Mϵ2

h̄2τ

∫ t

−t
[r(t′)− r(−t′)]2dt′

}

∼ exp
{
−Ms2ϵ2

h̄2τ

∫ t

−t
(t′)2dt′

}
∼ exp

[
− t3

τ3
ϕ(ε)

]
ballistic phonons: r(t) ∼ st

Phonons propagate with a constant velocity (s is the speed of sound), while the velocity of
excitons increases with increasing the temperature.

Thus, dephasing is less efficient at elevated temperatures.
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Weak localization: results
Phonons only

(a)

(b)

Phonons and impurities
(a)

(b)
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Take home message

Take home message
Excitons in 2D crystals are ideal objects to study linear and nonlinear transport effects.

Thank you for attention!
Kulig, …, MMG, Chernikov, Exciton Diffusion and Halo Effects in Monolayer Semiconductors, Phys. Rev. Lett. 120, 207401 (2018)

MMG, Phonon wind and drag of excitons in monolayer semiconductors, Phys. Rev. B 100, 045426 (2019)

Zipfel, …, MMG, Malic, Chernikov, Exciton diffusion in monolayer semiconductors with suppressed disorder, arXiv:1911.02909

MMG, Quantum interference effect on exciton transport in monolayer semiconductors, arXiv:1911.10528
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Electron spectrum

Brillouin zone

~10 meV

~300 meV

Kormanyos et al. (2015)
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Band structure & selection rules

Mo‐based
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Band structure & selection rules

W‐based
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Excitons in 2D semiconductors
Optically created electron‐hole pairs form excitons

Ψexc = ∑
ke,kh

Cke,kh |ke, se; kh, sh⟩ = ∑
ke,kh

Cke,khUµ(ke, kh)

|ke, se; kh, sh⟩ is the wavefunction of the state where the |ke, se⟩ conduction band state is
occupied and the K|kh, sh⟩ valence band state is empty

h

e

Exciton wavefunction

ΨK;ν,µ(ρe, ρh) =
exp (iKR)√

S
Φν(ρ)Uµ(ρe, ρh)

Envelope function (1s, 2p, . . .)

− h̄2

2µ
∆ρΦ(ρ) + V(ρ)Φ(ρ) = EΦ(ρ)

non‐parabolicity & SO‐coupling: Trushin, Goerbig, Belzig (2018)

23 / 23



Encapsulated vs. non‐encapsulated structures
hBN encapsulation suppresses the dielectric disorder

see, e.g., Archana Raja, …Alexey Chernikov, Dielectric disorder in two‐dimensional materials, Nat. Nano. (2019)
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Encapsulated vs. non‐encapsulated structures
hBN encapsulation suppresses the dielectric disorder

see, e.g., Archana Raja, …Alexey Chernikov, Dielectric disorder in two‐dimensional materials, Nat. Nano. (2019)
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Diffusion limits the exciton lifetime

Correlation of the diffusion coefficient and the lifetime
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Electron‐hole plasma vs. excitons

Binding energy

Eb ≈ 200 meV

Ionization equilibrium
between excitons and plasma

n̄X

Ntot
= 1 +

S
2Ntot

−

√(
S

2Ntot

)2

+
S

Ntot

Diffusion coefficients
microscopic model (E. Malic et al.)

Deh ≈ 10 cm2/s; DX ≈ 1 cm2/s
arXiv:1911.02909 (2019)
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Electron‐hole plasma vs. excitons
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Valley Hall effect: separation of valleys

Valley Hall effect
Generation of the valley current transversal to the exciton flux iσ ∝ [σ × Fdrag]

Drag force Fdrag can be caused by
Inhomogeneous deformation
Exciton temperature gradient (Seebeck effect)
Phonon wind/drag MMG (2019); Raül Perea‐Causín et al. (2019)

In conventional systems
E. Hall (1881): AHE in ferromagnets
Karplus, Luttinger (1954); Smith (1955): theory
M.I. Dyakonov, V.I. Perel (1971): SHE prediction
Y. Kato (2004); J. Wunderlich (2005): observation
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Microscopic theory: Three sources of the effect

Asymmetric scattering
(Mott effect, skew)

Mpk = Mq (1 + iξ[p × k]zσz)

iskew
σ =

ξ

h̄
kBTτ

h̄
Cas[Fdrag × ẑ]N

|Cas| ≪ 1

Shift of the wavepacket
(side‐jump, shift)

∆Rpk ∝ ξ[(p − k)× ẑ]

isj
σ ∼ ξ

h̄
[F × ẑ]N

Anomalous velocity
(intrinsic, Berry curvature)

va ∝ ξ[F × ẑ]

ia
σ ∼ ξ

h̄
[F × ẑ]N

These contributions partially compensate each other
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Exciton valley Hall effect: theoretical expectations

∂n
∂t

= D∆n− f drag ·∇n− ζ f drag ·∇×S− n
τ

,
∂S
∂t

= D∆S− ( f drag ·∇)S− ζ f drag ×∇n− S
Ts

f drag = τ
M Fdrag, S = σzẑ

MMG, L.E. Golub, in preparation 23 / 23
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