Коллективные явления в холодных непрямых экситонах Collective phenomena in cold indirect excitons

L.V. Butov

University of California San Diego

Sen Yang, A.T. Hammack, A. V. Mintsev, A.G. Winbow, E.E. Novitskaya, A.A. High, M. Remeika, J.C. Graves, G. Grosso, A.K. Thomas, Y.Y. Kuznetsova, J.R. Leonard, P. Andreakou, S.V. Poltavtsev, E.V. Calman, M.W. Hasling, C.J. Dorow, L.H. Fowler-Gerace, D.J. Choksy (*UCSD*)

A.D. Meyertholen, M.M. Fogler, Lunhui Hu, Congjun Wu (UCSD)

M. Vladimirova (Montpellier), T.C.H. Liew (Rome), T. Ostatnický, A.V. Kavokin (Southampton)

S.V. Lobanov, N.A. Gippius (Skoltech)

- J. Wilkes, A.L. Ivanov (Cardiff)
- D.E. Nikonov, I.A. Young (Intel)
- B.D. Simons (Cambridge), L.S. Levitov (MIT)
- K.L. Campman, M. Hanson, A.C. Gossard (UCSB)
- L.N. Pfeiffer, K.W. West (*Princeton*)
- S. Hu, A. Mishchenko, A.K. Geim, K.S. Novoselov (Manchester)

- Indirect excitons (IXs) aka interlayer excitons
- Spontaneous coherence and condensation of IXs
- Phenomena in IX condensate
 - Density wave, commensurability effect
 - Spin textures
 - Pancharatnam-Berry phase, coherent spin transport
 - Phase singularities, interference dislocations
- IXs in van der Waals heterostructures
 - Opportunity to realize high-T IX condensation
 - IXs at room temperature
 - Indirect trions

exciton - light bosonic particle in semiconductor

Indirect excitons (IXs) aka interlayer excitons

Degenerate Bose gas of excitons: thermal de Broglie wavelength ~ ~ separation between excitons

Temperature of quantum degeneracy 7

$$T_0 = \frac{2\pi\hbar^2}{m_x} n \sim 3 \text{ K}$$

excitons in GaAs QW
 $n = 10^{10} \text{ cm}^{-2}, m_x = 0.2 m_e$

IXs in CQW

IXs cool to 100 mK within \sim 100 ns lifetime *PRL* 86, 5608 (2001)

 $T_{\rm IX} \sim 100 \text{ mK} \ll T_0$ is realized for IXs

 $\left(\frac{2\pi\hbar^2}{mk_{\rm B}T}\right)^{1/2}$

 $\lambda_{dB} =$

Spontaneous coherence and condensation of IXs

Sen Yang, A.T. Hammack, M.M. Fogler, L.V. Butov, A.C. Gossard, *PRL* 97, 187402 (2006)

A.A. High, J.R. Leonard, A.T. Hammack, M.M. Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman, A.C. Gossard, *Nature* 483, 584 (2012)

Below the temperature of quantum degeneracy bosonic particles can form **a coherent state** ↔ **BEC**

Condensation in momentum space = Spontaneous coherence of matter waves

matter waves (in real space) $\lambda = h/p$

Direct measurement of spontaneous coherence and condensation

IX spontaneous coherence

emergence of spontaneous coherence around source of IXs at low T at $r > r_{coh}$ Phenomena in IX condensate

Density wave and commensurability effect in IX condensate

L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002)

L.S. Levitov, B.D. Simons, L.V. Butov, PRL 94, 176404 (2005)

Sen Yang, L.V. Butov, B.D. Simons, K.L. Campman, A.C. Gossard, *PRB* 91, 245302 (2015)

macroscopically ordered exciton state (MOES) or exciton density wave

L.V. Butov, A.C. Gossard, D.S. Chemla, *Nature* 418, 751 (2002)

theoretical model for MOES

instability results fromquantum degeneracy due tostimulated kinetics of exciton formationL.S. Levitov, B.D. Simons, L.V. Butov,

PRL 94, 176404 (2005)

IX spontaneous coherence in MOES

MOES is **condensate in k-space** with macroscopic **spatial order**

Sen Yang, A.T. Hammack, M.M. Fogler, L.V. Butov, A.C. Gossard, *PRL* 97, 187402 (2006)

A.A. High, J.R. Leonard, A.T. Hammack, M.M. Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman, A.C. Gossard, *Nature* 483, 584 (2012)

Commensurability effect of IX density wave

fluctuations of exciton density wave are suppressed when number of wavelength on wave confinement length is integer

 $v = L / \lambda_{\text{IX-wave}} = N$

commensurability effect: macroscopic system of IXs of length ~100 µm behaves collectively: MOES is collective phenomenon $l_{commensurability} >> \lambda_{IX-wave} > \xi_{coh} >> \lambda_{dB}$ \downarrow MOES is condensate in momentum space

IX density wave and commensurability effect

instability due to stimulated processes

Pancharatnam-Berry phase, spin textures, and long-range coherent spin transport in IX condensate

A.A. High, A.T. Hammack, J.R. Leonard, Sen Yang, L.V. Butov,T. Ostatnický, M. Vladimirova, A.V. Kavokin, K.L. Campman,A.C. Gossard, *PRL* 110, 246403 (2013)

J.R. Leonard, A.A. High, A.T. Hammack, M.M Fogler, L.V. Butov, K.L. Campman, A.C. Gossard, *Nature Commun* 9, 2158 (2018)

IX transport and spin precession

discovered by Pancharatnam for light

The **Pancharatnam-Berry phase** is a geometric phase

- appearing when the polarization state of light changes
- acquired over a cycle of parameters in the Hamiltonian governing the system

by Berry for matter waves

polarization state of light goes along closed contour on Poincaré sphere acquired Pancharatnam-Berry phase $\phi_{PB} = 1/2 \Omega$

Phase singularities, interference dislocations in IX condensate

J.R. Leonard, Lunhui Hu, A.A. High, A.T. Hammack, Congjun Wu, L.V. Butov, K.L. Campman, A.C. Gossard, arXiv:1910.06387

Dislocations (forks) in IX interference patterns

forks in interference patters are commonly associated with **vortices** in quantum systems

quantized vortex: phase winds by 2π around singularity point \leftarrow can be revealed as fork in interference pattern \uparrow explored for vortices in **atom** condensates, **optical** vortices, and **polariton** vortices

observed dislocations in interference pattern are not associated with conventional phase defects:

not vortices, not polarization vortices, not half-vortices, not skyrmions, not half-skyrmions

none of these simulated interference patterns is similar to experiment

observed singularity in interference pattern is **not** associated with vortex, or polarization vortex, or half-vortex, or skyrmion, or half-skyrmion

origin of observed phase singularities in IX condensate interference patterns: observed interference dislocations originate from converging of condensate matter waves

simulations reproduce observed "isolated" interference dislocations

observed and simulated complex interference patterns with multiple interference dislocations \leftrightarrow converging of condensate matter waves and phase domains \leftrightarrow Pancharatnam-Berry phase

Excitonic devices

Potential energy of IXs can be controlled by voltage

in-plane potential landscapes for IXs can be created and controlled by voltage excitonic devices operate with excitons in place of electrons

Proof of principle demonstration of excitonic devices

Excitonic devices for basic study • mesoscopisc of bosons

Condensation of IXs in a trap

With lowering *T*

diamond-shaped trap

- IXs condense at the trap bottom
- IX spontaneous coherence emerges

Experiment: A.A. High, J.R. Leonard, M. Remeika, L.V. Butov, M. Hanson, A.C. Gossard, *Nano Lett.* 12, 2605 (2012)

Theory: S.V. Lobanov, N.A. Gippius, L.V. Butov, *Phys. Rev. B* 94, 245401 (2016)

Agreement between experiment and theory: measured IX condensation is adequately described by (quasi)equilibrium BEC of interacting bosons

IXs in van der Waals TMD heterostructures

IX is composed of an electron and a hole confined in separated layers

IX heterostructures (HS)

GaAs HS Low-disorder system Van der Waals TMD HS IXs are robust at room T

Van der Waals TMD heterostructures for high-T IX condensation

Recent calculations: $E_b \sim 350 \text{ meV} > 10 \text{ T}_{room}$ Deilmann, Thygesen, *Nano Lett.* 18, 1460 (2018) Centre-to-centre distance (nm)

hBN layers

predicted high-T superfluidity in IXs in TMD heterostructures

$$T_{0} = \frac{2\pi\hbar^{2}}{m_{x}}n = \frac{4\pi m_{e}m_{h}}{m_{x}^{2}}(na_{x}^{2})Ry_{x}$$

$$n^{\max}a_{x}^{2} \sim 0.02$$

$$T_{0}^{\max} \sim 0.06Ry_{x}$$
high $Ry_{x} \rightarrow$ high T_{0}

M.M. Fogler, L.V. Butov, K.S. Novoselov, *Nature Commun.* 5, 4555 (2014)

IXs at room temperature in van der Waals TMD heterostructures

E.V. Calman, M.M. Fogler, L.V. Butov, S. Hu, A. Mishchenko, A.K. Geim, *Nature Commun.* 9, 1895 (2018)

IXs in MoS₂/hBN van der Waals TMD heterostructures

basic IX properties:

long lifetime

control of energy by voltage

transport

problems: $\sim 100 \text{ meV}$ broad line

few µm short-range transport

IXs in MoSe₂/WSe₂ van der Waals TMD heterostructures

E.V. Calman, L.H. Fowler-Gerace, D.J. Choksy, L.V. Butov, D.E. Nikonov, I.A. Young, S. Hu, A. Mishchenko, A.K. Geim, *Nano Lett.* (2020)

IXs in MoSe₂/WSe₂ van der Waals TMD heterostructures

Indirect trions

- high energy peak neutral indirect exciton (IX)
- low energy peak charged indirect exciton,

i.e. indirect trion (IX^T)

measured binding energy of indirect trion is in agreement with theory

 $E_b = 28 \text{ meV}$

theory: Deilmann, Thygesen, Nano Lett. 18, 1460 (2018)

Temperature dependence

Summary

- Spontaneous coherence and condensation of IXs
- Phenomena in IX condensate
 - Density wave, commensurability effect
 - Spin textures
 - Pancharatnam-Berry phase, coherent spin transport
 - Phase singularities, interference dislocations
- IXs in van der Waals heterostructures
 - Opportunity to realize high-T IX condensation
 - IXs at room temperature
 - Indirect trions