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Transient Mesoscale Oceanic Eddies

Snapshot of the

observed SSH

anomaly shows

eddies all over

the ocean

• Eddies have important kinematical and dynamical effects on the large-scale circulation.

— Ocean models must account for these effects either directly by brute-force computations or

indirectly by simple models referred to as “eddy parameterizations”.

• Examples of successful parameterizations:

— Gent-McWilliams (for downgradient diffusion of buoyancy due to baroclinic instability);

— Eddy viscosity (for downgradient diffusion of momentum due to Reynolds stresses).



Eddy Diffusion: To be or not to be?

Diffusive eddy parameterizations are easier to deal with, provided proper relation between the

eddy flux and mean gradient; for example, in the classical Reynolds decomposition case:

u′ q′ = −K∇q =⇒
∂q

∂t
+ u·∇q = ∇·(K∇q) +Q ;

where overbars can be generalized to indicate the large-scale (i.e., space-time filtered) fields,

and primes — to indicate the small-scale residual fluctuations.

• Coarse-graining problem: eddy/large-scale decomposition of the flow fields is not unique

and should fit the purpose;

• Fitting problem: estimates of spatially inhomogeneous, anisotropic and nonstationary eddy

diffusivity tensor K are data-constrained; and its Lagrangian estimates are even nonlocal;

• Ill-posedness problem: a non-zero eddy flux on the top of zero mean gradient; up-gradient

eddy fluxes;

• Complexity problem: Transient eddy fluxes can be more important than the mean ones, re-

sulting in highly transient and inhomogeneous K(t,x); also, non-uniqueness of K.

• Closure problem: Relating K to the large-scale flow properties is problematic, mostly be-

cause of the nonlocal processes involved.

All of the above problems appear in the western boundary currents with their eastward jet

extensions, thus, making them notoriously difficult for diffusive parameterizations.

Let me now pose specific eddy parameterization problem and explain the new ideas...



Double-Gyre Ocean Model

• Focus is on an idealized model of midlatitude ocean circulation with vigorous eddy dynam-

ics despite a simple setup (steady wind forcing; square basin; flat bottom). Large Reynolds

numbers are reached by solving with fine grid resolution.

• Governing equations for the two-layer QGPV β-plane double-gyre configuration:

∂q1
∂t

+ u1 ·∇q1 + βv1 = ν∇4ψ1 +W

ui = −
∂ψi
∂y

, vi =
∂ψi
∂x∂q2

∂t
+ u2 ·∇q2 + βv2 = ν∇4ψ2 − γ∇2ψ2

q1 = ∇2ψ1 + S1 (ψ2 − ψ1) , q2 = ∇2ψ2 + S2 (ψ1 − ψ2)

• Importance of eddy effects: Eastward jet extension and its adjacent recirculation zones are

not formed, if mesoscale eddies are not properly resolved.

instantaneous time-mean

Upper-ocean circulation of the

double-gyre model with coarse

grid (1/4◦) and low Re.

Goal of this study: To restore

the main eddy effects with a fully

closed parameterization.



Eddy Forcing Components

• Dynamical effects of eddies on the large-scale circulation can be expressed by eddy forcing

(EF), which is obtained by flow decomposition into the large-scale (overbarred) and eddy

(primed) components:

EF (t,x) = −∇·u q′ (large-scale/eddy advection)

−∇·u′ q (eddy/large-scale advection)

−∇·u′q′ (eddy/eddy advection)

Eddy forcing can be further decomposed into the time-mean and transient components:

EF (t,x) = 〈EF 〉(x) + EF ′(t,x)

• Let’s focus on the transient eddy forcing component EF ′(t,x). (first new idea!)

Eddy backscatter (part of the “inverse energy cascade”) is a dynamical mechanism based on

persistent correlations between EF ′ and the evolving large-scale flow. Despite being very

important in the ocean, this mechanism remains poorly understood.

• NOTE: Classical Reynolds decomposition (into the time-mean state and fluctuations) is:

(a) Useless for eddy backscatter, because (by construction) its EF ′ is degenerate (i.e., com-

pletely decorrelated from the large-scale flow).

(b) Misleading, when the large-scale flow evolves far from the time-mean state.



Eddy Backscatter Mechanism

• Eastward jet extension of the western boundary currents is driven by the eddy backscatter

mechanism (e.g., Berloff 2005; Waterman and Jayne 2011).

full flow large-scale eddies

time-mean eddy forcing transient eddy forcing

[multiplied by 5×104]

Large-scale and eddy

fields are separated by

spatial filtering and time

averaging (shown are

PV anomalies for some

snapshot).

• Both time-mean 〈EF 〉 and transient EF ′

eddy forcing components are positively

correlated with the evolving large-scale

eastward jet, but covariance of the jet with

EF ′ is 104 (!) times larger.

• We have to shift focus from modeling 〈EF 〉 (e.g., by relating eddy fluxes to large-scale

gradients) to modeling the backscatter effect of EF ′ either directly (e.g., by adding stochastic

forcing) or indirectly (e.g., by adding cumulative effect of stochastic forcing).



Transient Eddy Forcing in Eddy-Resolving Ocean Gyres

• Diagnozed EF ′(t,x) has spatio-temporal pattern characterized by weak variations of cor-

relation length scale Lcorr(x) and median time scale Tmed(x), hence, it can be approximated

(locally) as elementary “plunger” forcing: (second new idea!)

F (t, x, y; x0, y0) ∼ A(x0, y0) sin
( 2π t

Tmed

)

cos
(π

2

r

Lcorr

)

, r =
√

(x− x0)2 + (y − y0)2 < Lcorr

upper-ocean snapshot of EF standard deviation of EF, mean flow

• Local, linear-dynamics, eddy-resolving responses to elementary “plungers” can provide the

relation between eddy forcing and large-scale flow pattern. (third new idea!)



Single-Layer Green’s Function

Let’s consider the linearized, conservative single-layer dynamics with time-periodic δ-forcing:

∂

∂t

(

∇2ψ − S ψ
)

+ β
∂ψ

∂x
= δ(x) e−iω0t

Let’s look for solution in the form G = G̃ exp {−i
( βx

2ω0
+ ω0t

)

} and obtain:

∇2G̃ + γ2 G̃ =
i

ω0
δ(x) , γ2 =

( β

2ω0

)2

− S . radiating solution

This equation can be solved in terms of special functions,

and the solution is either radiating:

γ2 > 0 : G(t, x, y) ∼ H
(2)
0 (γr) exp {−i

( βx

2ω0
+ ω0t

)

} ,

or trapped:

γ2 < 0 : G(t, x, y) ∼ K
(2)
0 (γr) exp {−i

( βx

2ω0
+ ω0t

)

} ,

depending on the deformation radius S−1/2 involved.

• Solution doesn’t radiate, if S 6= 0 and forcing frequency ω0 is larger than some cutoff value.

— Baroclinic EF in the gyres has ωmed that is way too large for the baroclinic radiation,

nevertheless such EF generates radiating response — is there a paradox?



Plunger-Induced Dynamics in the Presence of Stratification and Background Flow

• Stratified fluid. In the absence of background flow, the barotropic and baroclinic modes are

decoupled =⇒ each mode of the solution is given by its own Green’s function.

• Spatially distributed plunger. Solution can be obtained as a convolution of Green’s functions.

In the presence of a vertically sheared background flow, the vertical modes become coupled, and the analytic

solution for the Green’s function is unknown...

• Background flow effect is the most important, because it provides basis for a closure.

In the two-layer case with zonal background flow (U1, U2), the equations to solve are:

−iω0

(

∇2G̃1 − S1 (G̃1 − G̃2)
)

+ β1
∂G̃1

∂x
+ U1

∂

∂x

(

∇2G̃1 − S1 (G̃1 − G̃2)
)

= F1(x, y)

−iω0

(

∇2G̃2 − S2 (G̃2 − G̃1)
)

+ β2
∂G̃2

∂x
+ U2

∂

∂x

(

∇2G̃2 − S2 (G̃2 − G̃1)
)

= 0

where β1 = β + S1(U1 − U2) and β2 = β + S2(U2 − U1).

Let’s Fourier transform these equations:

−i (kU1 + ω0)
[

− (k2 + l2 + S1) g̃1 + S1 g̃2

]

− i β1k g̃1 = f1(k, l)

−i (kU2 + ω0)
[

− (k2 + l2 + S2) g̃2 + S2 g̃1

]

− i β2k g̃2 = 0 ,



These equations can be written in the matrix form
(

a b

c d

)(

g̃1
g̃2

)

=

(

if1
0

)

,

solved for each (k, l) and inverted back to the physical space.

• Multi-layer extension of the problem is straightforward.

• Generalizations to arbitrary background flows and boundary conditions are not straightfor-

ward but can be done.

Let’s take a look at typical plunger-induced solutions for spatially uniform, zonal vertical

shears...



Plunger-Induced Solutions

barotropic baroclinic brt amplitude bcl amplitude

Shown are the real

components and com-

plex amplitudes...

• Background flow

effects:

(1) Baroclinic

delocalization.

(2) Baroclinic

amplification.

• Let’s introduce the

concept of “footprint”,

which is the time-mean

nonlinear self-interaction

of the plunger-induced

solution.



Plunger-Induced Footprints

barotropic baroclinic
elementary footrpints

• Zonally and temporally

averaged footprint is

called:

“elementary footprint”

• It describes rearran-

gement of PV by

transient forcing

• It strongly depends

on U(z) and other

parameters of the

problem

• It is characterized by

the amplitude and

half-basin integral

• It can be coarse-grained

for parameterization



Important Properties of Footprints

• No positive-definiteness “curse” as with eddy diffusivity: Footprints can rearrange PV (and

any other properties) both down and up its gradient.

• Very strong dependence on the background flow — basis for closure: Footprints are most

intense for intermediate values of background shear.

• Footprint amplitude increases with Lcorr, Tmed, and Reynolds number.

Dependence of elementary footprint

properties on the background shear

and radius of the plunger



Implementation Algorithm for Parameterization

• Scaling: Footprint comes from the linear solution =⇒ its plunger amplitude has to be

scaled by some large-scale property. Scaling by PV anomaly flux |u q| was implemented.

• Cumulative correction field, obtained by summing up elementary footprints all around the

basin, is added as extra forcing to the coarse-grid model and evolves with the flow solution.

• Cumulative correction field (color) for

the time-mean reference flow (contours)

must enhance the eastward jet.

Let’s take a look at fully parameterized solutions of the coarse-grid ocean model...



Effect of the Eddy Parameterization

• Eastward jet and its adjacent recirculation zones recover!

instantaneous time-mean

Coarse-grid model solution

Parameterized model solution



Summary of Results

• New framework for eddy parameterization is proposed and implemented.

• This framework builds on three new ideas:

(1) Backscatter: Focus on the transient eddy forcing;

(2) Transient impulses: Eddy forcing is approximated by simple “plungers”;

(3) Dynamical consistency: Effects of “plungers” are found by explicitly solving eddy-resolving

linear dynamics.

• Other important points:

(4) Parameterization is indirect, and this is serious advantage;

(5) Physical focus is shifted from eddy fluxes to their divergences;

(6) Mathematical language is shifted from linear normal modes to Green’s functions;

(7) Linear-dynamics problems can be solved once and used as the lookup table;

(8) Framework not only provides a systematic strategy, but also allows for many extensions,

refinements and optimizations.



Systematic Strategy for Improving the Parameterization

(1) To use a lot more of the large-scale flow information;

(2) To upgrade the time dependence (e.g., make it stochastic) and spatial structure (e.g., make

it anisotropic) of the plungers;

(3) To improve boundary conditions for the plunger problems and coarse-graining of footprints;

(4) To upgrade the plunger dynamics from the quasilinear to fully nonlinear;

(5) To extend the approach from the quasigeostrophic to primitive equations;

(6) To extend the approach to parameterizing transport and mixing of passive tracers.


