

Сверхпроводящие квантовые процессоры: физика, технология и перспективы

Алексей Устинов

Технологический институт Карлсруэ НИТУ МИСиС Российский квантовый центр

XVIII Школа «Нелинейные волны – 2018»

Нижний Новгород, 2 марта 2018 г.

Superconducting quantum machines

Components

- resonators
- Josephson junctions

Qubits

- phase, charge, flux
- -um's and –mon's
- decoherence

Quantum processors

- simple algorithms
- error correction
- simulators vs computers
- Not in this talk
 - quantum microwaves
 - single-photon detectors

© DiCarlo lab TU Delft

© Martinis lab UCSB/Google

Electromagnetic resonator as a quantum system

$$\hat{H} = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L}$$

conjugate operators

$[\widehat{Q}\widehat{\Phi}]$	=iħ
\sim	

harmonic potential: equidistant energy levels

way to get anharmonic potential is by using a nonlinear inductor: a Josephson junction

Alexey Ustinov

Josephson junction

Alexey Ustinov

Josephson junction: washboard potential

Dynamics of a small Josephson junction is equivalent to the motion of a particle

current

Macroscopic quantum system

How low should be the temperature?

To see the energy levels we need $\hbar \omega >> k_{\rm B}T$.

For the level separation frequency of

 $f = \frac{\omega}{2\pi} = 10 \,\text{GHz}$ the condition $T = \frac{\hbar\omega}{k_{\text{B}}}$ corresponds to $T \approx 0.48 \,\text{K}$

i.e. $1 \text{GHz} \iff 50 \text{ mK}$

energy

Josephson phase qubit

R. McDermott et al., *Science* **307**, 1299 (2005)

Flux and charge: Two extremes

Prototypical nonlinear equivalent circuit of a superconducting qubit

The central element is a Josephson tunnel junction shunted by a capacitor and an inductor. The junction has a nonlinear Josephson inductance L_J and a linear capacitance C_J .

© I. Siddiqi,
Supercond. Sci. Technol.
24, 091002 (2011)

|number>

phase>

Qubit	E _J /E _C	E_L/E_J
charge	< 1	0
transmon	~ 100	0
flux	~ 100	~ 0.5
phase	~ 10 ⁴	~ 0.2

Overview of superconducting qubits

Charge qubit: NEC experiments

 V_{G}

Nakamura et al., PRL 88, 047901 (2002)

Charge qubit: NEC experiments

Charge qubit: NEC experiments

Transmon qubit

J. Koch et al., Phys. Rev. A **76**, 042319 (2007)

Transmon = TRANSMission-line shunted plasma oscillatiON qubit

Alexey Ustinov

Transmon qubit

charge qubit Hamiltonian:

$$\hat{H} = E_C (\hat{N} - N_g)^2 - E_J \cos \hat{\varphi}$$

for E_J >> E_C, the eigenstates are in a cosine potential:

schematic of a transmon coupled to a resonator

(b) transmon embedded in a coplanar resonator

J. Koch et al., Phys. Rev. A 76, 042319 (2007)

X-mon qubits for scalable quantum integrated circuits

R. Barends et al., Phys. Rev. Lett. 111, 080502 (2013)

X-mon qubit

Alexey Ustinov

A circuit analog for cavity QED (Yale)

A. Wallraff, D. I. Schuster, A. Blais, et al., Nature 431, 162 (2004)

Charge qubit in a cavity (Yale)

Andreas Wallraff

Robert Schoelkopf

A. Wallraff, D. I. Schuster, A. Blais, et al., Nature 431, 162 (2004)

Dispersive qubit-field interaction

Circuit QED with Transmon Qubits

L. DiCarlo et al., Nature **467**, 574 (2010)

 each qubit interacts with the resonator. This is described by the Jaynes-Cummings Hamiltonian:

$$H = \hbar \omega_R \left(a^+ a + \frac{1}{2} \right) + \hbar \omega_Q \frac{\sigma_z}{2} + \hbar g \left(a^+ \sigma^- + a \sigma^+ \right)$$

cavity (resonator) qubit coupling cavity-qubit
 a^+ and a are photon creation / annihilation operators.

Alexey Ustinov

Flux qubit

quantum states:

 $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$

clockwise current

counterclockwise current

degeneracy point at

Hans Mooij

$$\Phi = \Phi_0/2$$

J.E. Mooij *et al.*, *Science* 285, 1036 (1999) C.H. van der Wal *et al.*, *Science* 290, 773 (2000)

Superconducting 3-junction flux qubit

flux quantization: $\varphi_1 + \varphi_2 + \varphi_3 + 2\pi \frac{\Phi}{\Phi_0} = 2\pi n$

effective 2D potential: $\frac{U}{E_J} = \cos \varphi_1 + \cos \varphi_2 + \alpha \cos \left(-\varphi_1 - \varphi_2 - 2\pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right)$

> Mooij et al. Science 285, 1036 (1999) Van der Wal et al. Science 290,1140 (2000)

Superconducting flux qubit as a two-level system (artificial atom)

magnetic flux bias $\Phi \sim \Phi_0/2$

$$H = \frac{1}{2} \left(\varepsilon \sigma_z + \Delta \sigma_x \right)$$

persistent current states $\pm I_p$

J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008)

excited state

QED readout of a flux qubit

AI/AIO_X/AI Josephson junctions

Anticrossings

Dispersive shift of the resonator due to the qubit in the ground state
 Evaluate qubit-resonator coupling, if gap ∆ is known

Flux qubit vs "fluxonium"

Flux qubit vs "fluxonium"

Decoherence

Microscopic defects in qubits

G. Grabovskij, T. Peicl, J. Lisenfeld, G. Weiss, and A. V. Ustinov, Science 338, 232 (2012)

Progress of superconducting qubits

M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013)

The 3D – Transmon Qubit

- no inductance
- minimized flux noise
- large capacitance 📥 avoids charge noise

- low field intensities
 no excitation of defects
- avoids dielectrics is low energy dissipation

 $\hat{H} = E_C (\hat{N} - N_g)^2 - E_J \cos \hat{\varphi}$

$T_1 = 70 \ \mu s$ $T_2^* = 95 \ \mu s$

Pictures: R. Schoelkopf, Yale / IBM Ch. Rigetti et al., arXiv: 1202.5533 (2012)

H. Paik et al., PRL 107, 240501 (2011)

Transmon basics: J. Koch et al., Phys. Rev. A 76, 042319 (2007)

New development: gatemons

PRL 116, 150505 (2016)

PHYSICAL REVIEW LETTERS

week ending 15 APRIL 2016

Gatemon Benchmarking and Two-Qubit Operations

L. Casparis,¹ T. W. Larsen,¹ M. S. Olsen,¹ F. Kuemmeth,¹ P. Krogstrup,¹ J. Nygård,^{1,2} K. D. Petersson,¹ and C. M. Marcus¹

 "gatemon" – transmon-like qubit tunable by dc voltage gate

single-qubit fidelity 99.3%two-qubit fidelity 91%

Multiplexed Readout of Superconducting Qubits

M. Jerger et al., *Europhys. Lett.* **96**, 40012 (2011) M. Jerger et al., *Appl. Phys. Lett.* **101**, 042604 (2012)

Demonstration of 2-Qubit Algorithms

L. DiCarlo et al., Nature 460, 240 (2009)

the Grover algorithm for searching an unsorted database is demonstrated with a fidelity of 85 %.
 (b) starting state (00)

- (c) equal superposition of all 4 states
- (d) rotation of the phase of the searched state (10)
- (g) maximal amplitude of the searched state.

3 coupled Transmon Qubits

L. DiCarlo et al., Nature 467, 574 (2010)

2014: Reaching the surface code threshold for fault tolerance of > 99.4% fidelity

John Martinis' UCSB team hired by Google

14 Fidelity: 0.995(4) 0.960(5) 0.0 Re(a) 0.583(5) 0.817(5) 0.0 Re(a) 0.0 Re(a) 0.5 0.0 Re(a) 0.0

September 2014

Kitaev's surface code implementation

In 2015 three teams have demonstrated the basic parts of the Kitaev's surface code

S. Benjamin and J. Kelly, *Nature Materials* **14**, 561 (2015)

Alexey Ustinov

Quantum simulators

Main idea: Measure the result of interaction of a superconducting qubit with an environment composed of an array of spectrally tailored microwave resonators

32 mm

Superconducting quantum metamaterial: the simplest quantum simulator

20 flux qubits

P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Huebner, H.-G. Meyer, E. Il'ichev, and A. V. Ustinov, *Nature Commun.* **5**, 5146 (2014)

D-Wave quantum computer: adiabatic quantum annealer-simulator

D-Wave Quantum Computer controversy

P ₂	0	0	9	8	0	0	P	8	0	0	9	8	0	0	P	8	0	0	P	8	0	0	9	8	0	0	9	8	0	0	Я
Ď	0	0	Ö_	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	Q	0	0	Ø	0	0	0	Ø	0	0	Ì
P.	0	0	þ		Ò	Ò	þ		Ò	Ò	•		Ò	Ò	Þ	þ,	Ò	Ò			Ò	Ò	þ		Ò	Ò			0	Ò	Ì
Þ	0	0	0	Ø	0	0	0	Ø	0	0	Ò.	O	0	0	0	Ø	0	0	0	Ø	0	0	Ó.	0	0	0	0	O	0	0	Ċ
P .,	0	0	0		0	0	0		0	þ		0	0	0		þ,	0	0			0	0		0	0	0	0		0	Ò	
bij	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	0	Ø	0	0	Ì
P.	0	0	0		0	0	0		Ò	0	0	þ,	0	Ò	0	þ,	Ò.	0	0	0	Ò	0	0	þ.	0	0	0		0	0	
Þ(0	O	L	Ø	0	0	0	L	O	O		۲	0	0	0	٥	0	0		Ø	0		0	Ø	0	0	0	Ø	0	0	Ì
P.	Ò.	Ò			Ò	Ò		0	0	Ò	Þ	0	Ò	Ò	þ	þ,	Ò	Ò			Ò	Ò	þ	0	Þ	þ			Ò.	Ò	
	0	0	0	Ø	0	0	0	۲	0	0	٥	٥	0	0	0	Ø	0	0	0	Ø	0	0	0	٥	0		0	Ø	0	0	Ľ
p.	0	0			Ò	0	0		0	0		0	0	ò		0	0	ò	0		ò	0		0	ò	0	0		0	ò	
bij	0	0	O	٥	0	0	L	۲	0	0	0	٢	0	0	0	Ø	0	0	Ò.	۲	0	0	0	Ø	0	0	Ø.	٥	0	0	d
p,	Ò	0	þ		Ò	Ò	•		0	Ò		þ,	Ò	Ò.	þ	þ,	Ò	Ò			Ò	Ò	þ	þ,	ò	Ò	0	ò	0	Ò.	
bí	0	0	0	0	0	0	Ó.	Ó	0	0	0	Ó	0	0	0	Ø	0	0	0	Ó	0	0	0	Ó	0	0	0	Ó	0	0	¢
D.	0		0	0	0	6	þ	6	0	0		Ò.	0	0	þ	þ,	0	0	0	Ò.	6	6	þ	þ.	0	6	0		0	0	
ť	Ó	0	0	ď	0	0	Ó.	ď	0	0	Ò.	ď	0	0	Ò.	ď	0	O	0	ď	0	0	Ò.	ď	0	0	0	Ó	0	Ó	d

FIGURE 1 | D-Wave's recent generation Chimera connectivity graph *G*. Vertices indicate spin-valued variables represented by programmable qubits (*h*/s), and edges indicate programmable couplers (*J*_{1/2}'s). *G* is a lattice of *K*_{4,4} unit cells where missing qubits are the result of fabrication defects.

- Washington world-largest QC: 1152 qubits, 933 operational
- Quantum operation confirmed for 8-qubit register
- Consistent with either quantum or classical operation

State of the art for superconducting qubits

- Superconducting qubits are currently the most advanced technology for building scalable quantum circuits
- Gates and simple algorithms have been reported with up to 19 qubits (charge, flux, phase, and transmon qubits)
- Quantum gates take time 10-50 ns
- Coherence times T₁, T₂ are currently in the range 10-50 μs (2D) and up to several 100 μs (3D)
- D-Wave is marketing superconducting quantum annealer (simulator)
- Google, IBM, Microsoft enter the race towards building a scalable quantum computer

КВАНТОВЫЙ ПРОЦЕССОР GOOGLE

Google планировал к концу 2017 года продемонстрировать квантовый процессор на 49 кубитах. Цель - продемонстрировать "quantum supremacy".

КВАНТОВЫЙ ПРОЦЕССОР ІВМ

5-кубитый процессор IBM (2015)

16-кубитый процессор IBM (2017)

СВЕРХПРОВОДЯЩИЕ КУБИТЫ В РОССИИ

Универсальные квантовые компьютеры

факторизация (алгоритм Шора) поиск в базе данных (алгоритм Гровера и др.) квантовая химия расчет новых материалов

Адиабатические компьютеры, устройства квантового отжига

задачи оптимизации машинное обучение (combinatorial optimization problems) искусственный интеллект

Аналоговые квантовые компьютеры (симуляторы)

моделирование квантовых систем фотосинтез и лекарства квантовый "Лего"

...