Дорога к открытию гравитационных волн

С.П. Вятчанин

Кафедра физики колебаний Физический факультет МГУ им. М.В. Ломоносова

Нелинейные волны – 2018 Нижний Новгород, 28 февраля 2018

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

Прямое детектирование гравитационных волн

- Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)
- Из истории ГВ антенн
- 4 Какие смещения?
- 5) Вклад группы В.Б. Брагинского (физфак МГУ)
 - Шумы подвеса и заряда
 - Тепловые шумы поверхности зеркал
 - Параметрическая неустойчивость в aLIGO
 - Квантовые шумы в лазерных ГВ антеннах

A (1) > A (1) > A

Общая теория относительности

Альберт Эйштейн

- 1915 1916 формулировка ОТО^а:
 - Тяготение как кривизна пространства-времени.
 - Кривизну создает присутствующая материя.

^aAlbert Einstein, Annalen der Physik (1916) 354

Летящие волны кривизны пространства-времени

Земное тяготение – слабое возмущение кривизны пространства-времени:

$$h\simeq \frac{R_{\tt a}g}{c^2}\simeq 10^{-9}\ll 1$$

14 сентября 2015: PRL, v.116, 061102 (2016)

Figure: По строкам: 1) записи на детекторах в Хэнфорде и Ливингстоне, 2) записи пропущенные через фильтр 35 - 350 Гц, 3) что осталось после фильтра.

28 февраля 2018 5 / 40

A ID > A (P) > A

Источник события 1: слияние двух черных дыр

Схема антенны aLIGO

Figure: Схема лазерных интерферометров aLIGO. Узкие пики: калибровка (33–38, 330, and 1080 Гц), моды упругих колебаний нитей подвеса (500 Гц и гармоники), 60 Гц (и гармоники) электропитания.

28 февраля 2018 7 / 40

A ID > A (P) > A

Зарегистрировано 4 слияния черных дыр

События 2017 года

GW170104

Массы чёрных дыр 31 $M_{\odot},~19~M_{\odot}$ За доли сек. $\simeq~1 M_{\odot}$ превратились в ГВ

 $L\simeq 3$ миллиарда световых лет назад

Черные дыры имеют спины, которые направлены примерно под 120° к орб. моменту.

События 2017 года (прод.)

SNR: 7.3 (LIGO Hanford), 13.7 (LIGO Livingston), 4.4 (Virgo). Массы чёрных дыр 30 M_{\odot} , 25 M_{\odot} $\simeq 3M_{\odot} \implies \Gamma B$ $L \simeq 1.5$ миллиарда световых лет Лучшая локализация источника

События 2017 года (прод.)

GW170817: слияние нейтронных звезд

SNR: 19 (LIGO Hanford), 26 (LIGO Livingston), 2.0 (Virgo) Массы НЗ около 1.5 М. $L\simeq 0.12$ миллиарда световых лет Зарегистрировали сигналы: гамма-телескопы Fermi (США) и INTEGRAL (EC) – 1.7 сек позже Оптические телескопы (в т.ч. MACTEP) Регистрация э.м. излучения (> 70 детекторов), Рождение много-волновой астрономии (multi-messenger astronomy) "Kilonova" остающийся после слияния материал выбрасывается В космос, фабрика тяжелых металлов.

С.П. Вятчанин (Физфак МГУ)

Дорога к открытию гравитационных волн

28 февраля 2018 11 / 40

Схема антенны aLIGO

Figure: Схема лазерных интерферометров aLIGO. Узкие пики: калибровка (33–38, 330, and 1080 Гц), моды упругих колебаний нитей подвеса (500 Гц и гармоники), 60 Гц (и гармоники) электропитания.

28 февраля 2018 <u>12 / 40</u>

A ID > A (P) > A

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

5) Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

A D > A B > A B

Джеймс Максвелл (1831 – 1879)

Уравнения Максвелла (1864) предсказывают электромагнитные волны. Генрих Герц – первые опыты (1885 – 1889), э.м. волны существуют! Александр С. Попов (1905) – открытие радио (приемник – передатчик).

Гравитационный вариант опыта Герца?

Гравитационное взаимодействие — слишком слабое.

На Земле невозможен опыт с приемником и передатчиком.

ГВ из космоса

Остается возможность регистрации ГВ от космологических источников:

- Взрывы сверхновых.
- Слияние двух черных дыр, двух нейтронных звезд, черной дыры с нейтронной звездой.
- Реликтовое гравитационное излучение.

Гравитационные и электро-магнитные волны (ЭМВ)

- ГВ квадрупольное излучение, ЭМВ дипольное.
- Астроисточники ЭМВ негерерентное излучение (электроны, атомы, молекулы). Источники ГВ когерентное движение больших масс.
- Длины волн ЭМВ малы дают информацию о форме источников. Длины волн ГВ — много больше размеров источников (аналогия с симфоническим звуком).
- ЭМВ легко поглощаются и преломляются, ГВ "не знают преград".
- Частотный диапазон астрономических ЭМВ начинается с $f \sim 10^7$ Гц выше на 20 порядков. Диапазон ГВ с $f \sim 10^4$ ' Гц и ниже.

Информация от ГВ и ЭМВ

- ГВ движение больших масс, ЭМВ ТД состояние тонких слоев.
- Обычно (не всегда) источники ГВ не "видны" в ЭМ диапазлне, а ЭМ источники не излучают ГВ.
- В прошлом освоение все более ВЧ ЭМ волн дало новую информацию (квазары, пульсары, ЭМ реликтовый фон). ГВ – сюрпризы впереди.

Диапазон лазерных ГВ антенны: 30 – 1000 Гц

- Слияние двух черных дыр (ВН-ВН).
- Слияние двух нейтронных звезд (NS-NS).
- Слияние нейтронной звезды с черной дырой (NS-BH).

Предсказание (ВН-ВН) 2001

Л.П. Грищук, В.М. Липунов, К.А. Постнов, М.Е. Прохоров и Б.С. Сатьяпракаш (УФН, **171**, №1 (2001), 3 - 59):

"Наши оценки показывают, что первые интерферометры будут видеть 2 - 3 события в год от черных дыр с массами компонент 10 -15 M_{\odot} , при отношении сигнала к шуму примерно 3 в сети детекторов, состоящей из GEO, VIRGO и двух антенн LIGO. Из анализа следует, что другие возможные источники, включая сливающиеся нейтронные звезды, вряд ли будут доступны этому поколению инструментов."

Непрерывное излучение ГВ

Источники

- Вращающиеся несимметричные одиночные нейтронные звезды (несимметрия остаточной деформации коры или несимметричное распределение магнитного поля), частоты ~ 50 Hz (напр. пульсар в Крабовой тум.).
- Активная аккреция вещества в двойных системах..
- "Милисекундные" двойные звезды, в которых прекратилась аккреция, вращение с частотами выше 100 Гц.

Двойные системы

$$-\frac{d\mathcal{E}}{dt} = \frac{32G^4m_1^2m^2(m_1+m_2)}{5c^5r^5}, \quad -\frac{dr}{dt} = \frac{64G^3m_1m_2(m_1+m_2)}{5c^5r^3}$$

1993 г. Нобелевская премия (Рассел Халс и Джозеф Тейлор)

Открытие гравитационных волн по изменению частоты двойных пульсаров. Это косвенное подтверждение существования грав. волн Спектр ГВ

The Gravitational Wave Spectrum

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

28 февраля 2018

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

Из истории ГВ антенн

Какие смещения?

5) Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

A D > A B > A B

18 / 40

Ты помнишь, как все начиналось...

Твердотельные антенны (1970 – 1990)

Дж. Вебер в лаборатории

Владимир Борисович Брагинский

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

Лазерная гравитационная антенна

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

28 февраля 2018 19 / 40

LIGO: две антенны (4 км)

1992 г. — Kip Thorne, Ronald Driver (CIT) and Rainer Weiss (MIT) предложили LIGO (Laser Inteferometric Gravitational Observatory). 1992 г. — гр. В.Б.Брагинского начала сотрудничать с LIGO.

2002 г. — Initial LIGO: S1 (scientific run), начаты записи сигнала. 2010 г. — остановка Initial LIGO, начат переход на Advanced LIGO. 2015 г. — инженерный и научный запуск Advanced LIGO,

Initial LIGO

Сложнейшая инженерная установка

・ロト ・回ト ・ヨト

Пройден тяжелый путь (2002 – 2010)

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

LIGO Scientific Collaboration

VIRGO, GEO600

Virgo (Италия, Франция) Антенна (3 км) в Кошине (Италия)

GEO (Великобритания, Германия) Антенна (600 м) в Ганновере

Cryogenic

КАGRA (Japan) — зеркала при криогенной температуре.

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

4 Какие смещения?

5) Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

A D > A B > A B

Масштаб

От Земли до атома

Флуктуации поверхности зеркал

LIGO: средняя координата лазерного пятна D = 6 см флуктуирует за время $\tau \simeq 0.01$ с $\Delta X_{\text{тепл.}} \simeq 10^{-19}$ м Это почти почти во столько же раз меньше размера атома, во сколько атом меньше апельсина. Это измеримо! В.Б. Брагинский, В.И. Панов, В.Д. Попельнюк, 1981

Сверхпроводящий емкостной датчик, зазор 4 микрона:

$$\Delta X\simeq 10^{-19}$$
 м, зазор 4 мкм, за $au=10$ с

"Initial" LIGO, 2011

Лазерный луч измеряет усредненную координату зеркала

$$\Delta X \simeq 4 imes 10^{-18}$$
 м, расстояние $\mathsf{L}=4$ км, за время $au \simeq 0.01$ с

Advanced LIGO, 2015

 $\Delta X \simeq {f 10}^{-19}$ м, расстояние ${f L}=4$ км, за время $au\simeq 0.01$ с (!)

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

💿 Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

< 🗇 🔸 🔹

В LIGO группа В.Б. Брагинского работает с 1992 г.

Сотрудники группы (кафедра физики колебаний физфака МГУ):

- проф. В.П. Митрофанов (нынешний руководитель коллектива)
- проф. И.А. Биленко
- проф. С.П. Вятчанин
- проф. М.Л. Городецкий
- проф. Ф.Я. Халили
- доц. С.Е. Стрыгин
- асс. Л.Г. Прохоров
- Студенты, аспиранты и тех. персонал кафедры.

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

💿 Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

< 🗇 🔸 🔹

Кварцевые маятники

Время затухания колебаний ≈ **5 лет**

Квазимонолитный маятник Калтех – изготовление кварцевых нитей подвеса, Университет Глазго – соединение пробной массы с конусами, МГУ – сборка маятника и измерение рекордного

времени затухания колебаний

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A

Увеличение времени затухания колебаний или добротности подвесов - ключевой фактор снижения тепловых шумов.

27 / 40

Шумы подвеса

Стальные проволоки (подвес Initial LIGO) – экспериментально обнаружены «потрескивания» – избыточные шумы, связанные с большой запасенной упругой энергией. Кварцевые нити (подвес Advanced LIGO) – такого эффекта нет.

< (17) > < (17)

Подвес "в полный рост" (aLIGO)

Электрические заряды на кварцевых побных массах

снижения шумов, связанных с электрическими зарядами.

Измеренное время релаксации электрического заряда составило более **3 лет**

30 / 40

Эволюция распределения зарядов на зеркалах aLIGO

Электростатический актюатор Advanced LIGO

В 2015 г. на детекторе LIGO Л.Прохоров вместе с коллегами исследовали поведение зарядов. Установлен оптимальный режим работы электростатического актюатора.

31 / 40

A ID > A (P) > A

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

💿 Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

< 🗇 🔸 🔹

Тепловые шумы поверхности зеркал aLIGO

Множество различных тепловых шумов поверхности зеркал aLIGO... таки разобрались!

Броуновские шумы

Принята феноменологическая модель структурных шумов

Термодинамические флуктуации температуры

ТД флуктуации температуры через тепловое расширение приводят к *дополнительным* шумам.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

34 / 40

Вклад различных тепловых шумев

Из чего делать зеркала aLIGO?

< (17) × <

САПФИР или ПЛАВЛЕНЫЙ КВАРЦ

Группа физфака МГУ доказала, что кварц шумит меньше сапфира. "Открыты" термоупругие и терморефрактивные шумы, их причина фундаментальные термодинамические флуктуации температуры.

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

💿 Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

< 🗇 🔸 🔹

2001 г.: предсказание параметрической неустойчивости в aLIGO

1) Есть опт. стоксова мода с частотой $\omega_1 \simeq \omega_0 - \omega_m.$

2) Колебания зеркала (ω_m) — отраженная опт. волна содержит частоты $\omega_0, \ \omega_0 \pm \omega_m$. Возбуждение стоксовой моды.

3) Сила лебедевского давления света содержит перекрестный член $E_0 E_1^*$ на частоте ω_m .

 При достижении пороговой мощности накачки неустойчивость.

< (17) × <

Параметрическая неустойчивость – нежелательное возбуждение оптических мод интерферометра и механических мод зеркал при оптической мощности в плечах **больше пороговой**.

37 / 40

Планируемая циркулирующая мощность в aLIGO – до 800кВт Разрабатываются методы подавления.

38 / 40

A ID > A (P) > A

Прямое детектирование гравитационных волн

Гравитационные (ГВ) и электро-магнитные волны (ЭМВ)

3 Из истории ГВ антенн

Какие смещения?

💿 Вклад группы В.Б. Брагинского (физфак МГУ)

- Шумы подвеса и заряда
- Тепловые шумы поверхности зеркал
- Параметрическая неустойчивость в aLIGO
- Квантовые шумы в лазерных ГВ антеннах

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

39 / 40

< 🗇 🔸 🔹

Квантовые шумы

Стандартный квантовый предел (СКП)

• Принцип неопределленности Гейзенберга:

$$\Delta x_{\!\scriptscriptstyle \mathsf{ИЗM}} \Delta p_{\!\scriptscriptstyle \mathsf{BOЗM}} \geq rac{\hbar}{2}$$

- Кв. флуктуации мешают точно измерять x: $\Delta x_{{}_{\!\!\mathsf{ИЗM}}} \sim 1/\sqrt{P}$
- ullet Они же создают случайную силу давления света $\Delta x_{\scriptscriptstyle
 m BOSM} \sim \sqrt{P}$

При оптимальной мощности – СКП (Брагинский, 1968)

$$\Delta x_{\rm meas} = \Delta x_{\rm pert} = \frac{x_{\rm CK\Pi}}{\sqrt{2}} = \sqrt{\frac{\hbar t}{2m}}$$

Цель aLIGO — достичь СКП и, возможно, преодолеть ...

Нужна циркулирующая в плечах мощность:

 $P=800~{
m \kappa Br},~{
m ceйчac}~\sim 100~{
m \kappa Br}$

Как преодолеть СКП?

Группа физфака МГУ:

- Стробирующее измерение
- Вариационное измерение
- Измеритель скорости
- Оптическая жесткость

влияния.

С.П. Вятчанин (Физфак МГУ) Дорога к открытию гравитационных волн

28 февраля 2018

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

41 / 40