

Стародубцев М.В. Институт прикладной физики РАН (ИПФ РАН, Нижний Новгород)

Экспериментальное исследование процессов с высокой плотностью электромагнитной энергии

Стародубцев М.В. Нелинейные волны-2018

Collaborators

Соловьев А.А.¹ Бурдонов К.Ф.¹ Сладков А.Д.¹ Коржиманов А.В.¹ Гинзбург В.Н.¹ Хазанов Е.А.¹ Коробейникова А.П.¹ Кочетков А.А.¹ Кузьмин А.А.¹, Шайкин И.А.¹ Шайкин А.А.¹ Яковлев И.В.¹ Степанов А.Н.¹ Мурзанев А.А.¹ Корытин А.И.¹

Пикуз С.А.³ Скобелев И.Ю.³ Рязянцев С.Н.³ Алхимова М.А.³ Филиппов Е.Д.³ Пикуз Т.А.³

A. Chiardi⁴ B. Khiar⁴

Observatoire

Бисикало Д.В.⁵ Курбатов Е.П.⁵

PETAL-LMJ

Ultra-high intensity lasers

Terry Kessler, ICUIL Secretary ICUIL News – June 2016 – 3

Apollon project Cile Apollon

Лето 2016 г.

- 2×10 PW (200 J, 20 fs)
- 3 PW
- LINAC (720 MeV)

Proton/ion acceleration Nuclear physics Gamma beam system

Laser-plasma interaction: applications Betatron x-ray nduced by laser-generated hot electrons in the present widely used Laser driven acceleration Electro. X-ray beam B-field Particles acceleration Scattering X-ray generation. Dual-gas jet Drive beam С Applications Radiotherapy Bio-imaging HED physics With the B-field, a long & steady jet is seen to Laser Beams: Indirect Drive form through each L Hohlraum control symme LabAstro • U hohlraum wit layer or pure A Capsule with low-z B = 20 T ablator (CH, Be, or * ICF HDC*) and cryo fuel layer C NASA & ESA Capsule fill tub Laser Entrance Hole 3. Albertazzi et al., sized to balance LPI and ence 346, 325 (2014) B = 201radiative losses He fill to contro 56-60% of LEH diamet and minimize L

10

15

20

*High Density Carbon

LPA: records

Ускорение электронов:

прозрачная плазма (газовые мишени) плавная фокусировка лазерного излучения (≥10 м) длинная область взаимодействия (до нескольких см)

Leemans et al. (2014) / BELLA

LPA: records

Ускорение протонов/ионов:

непрозрачная плазма (твердотельные мишени) острая фокусировка лазерного излучения (высокая *I*) высокий контраст лазерного излучения

Sub-PW OPCPA PEARL laser facility

PEARL Ion acceleration

Ускорение протонов/ионов:

непрозрачная плазма (твердотельные мишени) острая фокусировка лазерного излучения (высокая *I*) высокий контраст лазерного излучения

Адаптивная система -15 -15 -10 -10 0.8 -5 -5 0.6 0 0 0.4 10 10 0.2 15 15 -10 0 10 -10 0 10

Accomplished experiments

Ion/proton acceleration at target/vacuum interface induced by laser-generated hot electrons in the present widely used regime: *Target Normal Sheath Acceleration*

Accomplished experiments Ion acceleration: X-ray spectrometry

Focusing Spectrometer with Spatial Resolution (FSSR)

No signature of a significant preplasma at the target front: the target remains at solid density by the time the main laser pulse arrives

Численное моделирование образования предплазмы

43.3 MeV proton beam

No.	Reference	Pulse energy W _L (J)	Pulse duration τ (fs)	Irradiance $I_0 (\mathrm{W} \mathrm{cm}^{-2})^{\mathrm{a}}$	Contrast	Target and thickness (µm)	Incidence angle (°)	Proton/ion energy $\mathcal{E}_{p(i)}$, (MeV/nucleon)
1	Snavely et al (2000)	423	500	3×10^{20}	1×10^4	CH 100	0	58
2	Krushelnick et al (2000b)	50	1000	5×10^{19}	_	AI 125	45	30
3	Nemoto <i>et al</i> (2001)	4	400	6×10^{18}	5×10^{5}	Mylar 6	45	10
4	Mackinnon et al (2002)	10	100	1×10^{20}	1×10^{10}	AI 3	22	24
5	Patel et al (2003)	10	100	5×10^{18}		AI 20	0	12
6	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	Mylar 23	0	1.5
7	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	AI 12	0	0.9
8	McKenna et al (2004)	233	700	2×10^{20}	1×10^{7}	Fe 100	45	40
9	Kaluza <i>et al</i> (2004)	0.85	150	1.3×10^{19}	2×10^{7}	AI 20	30	4
10	Oishi <i>et al</i> (2005)	0.12	55	6×10^{18}	1×10^{5}	Cu 5	45	1.3
11	Fuchs et al (2006)	10	320	6×10^{19}	1×10^{7}	AI 20	0 and 40	20
12	Neely et al (2006)	0.3	33	1×10^{19}	1×10^{10}	Al 0.1	30	4
13	Willingale et al (2006)	340	1000	6×10^{20}	1×10^{5}	He jet 2000		10
14	Ceccotti et al (2007)	0.65	65	5×10^{18}	1×10^{10}	Mylar 0.1	45	5.25
15	Robson <i>et al</i> (2007)	310	1000	6×10^{20}	1×10^{7}	Al 10	45	55
16	Robson <i>et al</i> (2007)	160	1000	3.2×10^{20}	1×10^{7}	Al 10	45	38
17	Robson <i>et al</i> (2007)	30	1000	6×10^{19}	1×10^{7}	Al 10	45	16
18	Antici et al (2007)	1	320	1×10^{18}	1×10^{11}	Si ₃ N ₄ 0.03	0	7.3
19	Yogo <i>et al</i> (2007)	0.71	55	8×10^{18}	1×10^{6}	Cu 5	45	1.4
20	Yogo <i>et al</i> (2008)	0.8	45	1.5×10^{19}	2.5×10^{5}	Polyimide 7.5	45	3.8
21	Nishiuchi et al (2008)	1.7	34	3×10^{19}	2.5×10^{7}	Polyimide 7.5	45	4
22	Flippo <i>et al</i> (2008)	20	600	1.1×10^{19}	1×10^{6}	Flat-top cone Al 10	0	30
23	Safronov et al (2008)	6.5	900	1×10^{19}		Al 2	0	8
24	Henig et al (2009b)	0.7	45	5×10^{19}	1×10^{11}	DLC 0.0054	0	13
25	Fukuda <i>et al</i> (2009)	0.15	40	7×10^{17}	1×10^{6}	CO ₂ +He cluster jet 2000		10
26	Zeil et al (2010)	3	30	1×10^{21}	26×10^8	Ti 2 μ m	45	17
27	Gaillard et al (2011)	82	670	1.5×10^{20}	1×10^{9}	Flat-top cone Cu 12.5	0	67.5

LPA: records

Ускорение протонов/ионов:

непрозрачная плазма (твердотельные мишени) острая фокусировка лазерного излучения (высокая *I*) высокий контраст лазерного излучения

Laser-plasma interaction: applications

- Laser driven acceleration
 - Particles acceleration
 - X-ray generation.
- Applications
 - Radiotherapy
 - Bio-imaging

HED physicsLabAstro

* ICF

Laser-plasmas are great tool to investigate "laboratory astrophysics" → what can be realistic goals?

- 1. Observe the dynamics of a directly+fully scalable phenomenon
- 2. Investigate physics (even if non fully scalable system) that is out of reach of present-day codes
- 3. Test a segment of a model/code (e.g. EoS)

В

Modeling of magneto-hydrodynamic plasma phenomena

Modeling of magneto-hydrodynamic plasma phenomena

Modeling of magneto-hydrodynamic plasma phenomena

Ambient magnetic field

- Split pulsed solenoid
- Uniform configuration (20 T)
- "Zero-point" configuration

Laser plasma production

- PEARL pump laser
 (~100 J, 1 ns, 1054 nm)
- Solid-state targets

Initial laser-plasma conditions

Initial laser-plasma conditions

Laser

Ne = 3e18 cm-3, Z = 6.3, Te = 200 eV, Ti = 200 eV, B0 = 13.5 T, V = 600 km/s, L = 0.4 cm

'v_s(km/s) = '	[104.2111]	
'v_A(km/s) = '	[104.4661]	
'lambda_e(um) = '	[43.3147]	
'lambda_i(um) = '	[1.4920]	field
'rho_e(um) = '	[2.4975]	<u>ن</u> م
'rho_i(um) = '	[69.1992]	Wall
'M(Mach) = '	[5.7575]	-
'M_A(Afven Mach) =	=' [5.7435]	
'beta(p_th/p_b) = '	[1.5259]	et
'beta_dy <mark>(</mark> p_dynamic	c/p_b) = ' [65.5693]	targ
'Pe_heat (Peclet) = '	[4.3136]	olid
'Re (Reynolds) = '	[1.7794e+005]	5
'ReM (magnetic Rey	nolds) = ' [2.2529e+003]	
'Hall_e = '	[17.3433]	
'Hall_i = '	[0.0216]	
'Pr (Prandtl) = '	[0.0379]	
'p_b(magn. press., N	VIPa) = ' [72.9000]	
'p_th(kin. press., MI	Pa)=' [111.2381]	
'p_dy(ram press., M	Pa) = ' [3.6875e+003]	
'c/omega_pi(um) =	[545.7387]	

Modeling of magneto-hydrodynamic plasma phenomena

Full-scale astrophysical simulation

Simulations perior med	by A. Clarui		
Objet	cas 1	cas 2	cas 3
Champ magnétique (mG)	5	20	10
Taux de masse éjecté ($M_{solaire}/an$)	10-8	5.10-7	10-7
T _{ambiant} (K)	100	500	100
T _{vent} (K)	10000	500	10000
ρ _{vent} (part.cm ⁻³)	10^{5}	10^{7}	10 ⁶
ρ _{ambiant} (part.cm ⁻³)	4.10 ³	4.10 ⁵	4.104
R _{éjection} (U.A)	8	10	10
vitesse d'éjection (km.s ⁻¹)	200	70	130
Perturbation en vitesse (%)	5	10	5

Simulations performed by A Ciardi (code RAMSES)

 Modeling of magneto-hydrodynamic plasma phenomena: jet formation mechanisms

Laser-plasma plume propagating along the ambient magnetic field

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

B. Albertazzi *et al. Science* **346**, 325 (2014); DOI: 10.1126/science.1259694

 Modeling of magneto-hydrodynamic plasma phenomena: jet formation mechanisms

Laser / astrophysical plasma scaling

Quantity	Laser-plasma	YSO			
	10 ¹³ W/cm ²		$P_e > 1$: close to 1, thermal conduction		
B ₀	20 T	~1e-3 G	/ plays a minor role		
Peclet	3.5	1.0e11	$R_{a} >> 1$: viscosity negligeable		
Reynolds	1.0e4-1.0e5	1.0e13	e , 55		
Magnetic Reynolds	50-5000	1.0e15	R _{em} >1: magnetic field lines frozen		
Mach (v _{jet} /c _s)	1-50	10-50	in the outflow supersonic		
β =p plasma /p magnetic	>>1 near source <<1 away	Same, <<1 from ~10s AU	β: plasma varies from kinetic to magnetically dominated		
		1202			
✤ Time: 20 ns →	6 years				
Space: 1 mm → 300 Al	J, or 4.5 10 ¹³ m		Both are ideal MHD plasmas		
Magnetic field: 20	$T \rightarrow 1 \mu T$				
			D. D. Ryutov et al., The Astrophysical J.		

Suppl. 127, 465 (2000)

Modeling of magneto-hydrodynamic plasma phenomena

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc
 edge dynamics

Adapted from Camenzind, (1990).

 Modeling of magneto-hydrodynamic plasma phenomena: accretion disc edge dynamics

Laser-plasma plume propagating across the ambient magnetic field

expect:

plasma expansion across \mathbf{B}_0 is limited by magnetic pressure

further plasma expansion is along \mathbf{B}_0

Andrea Ciardi (2016)

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

16ns,

25J

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

26ns,

25J

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc.

Modeling of mag

phenomena: accretion disc

25J

ry astrophysics

25J

phenomena: accretion disc

sma phenomena: accretion disc

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc

Laser plasma expansion across \mathbf{B}_0 : experiment

Laser plasma expansion across \mathbf{B}_0 : experiment

Laser plasma expansion across \mathbf{B}_0 : experiment

Ne = 1e18 cm-3, Z = 6.3, Te = 30 eV, Ti = 30 eV, B0 = 13.5 T, V = 600 km/s, L = 0.1 cm

8			
7			
6			
5			
4			
3	_(\mathbf{X}	
2			
1			0

Laser pla

'v_s(km/s) = ' [40.3608]
'v_A(km/s) = ' [180.9407]
'lambda_e(um) = ' [4.2320]
'lambda_i(um) = ' [0.1458]
'lambda_p(c/f_p, um) = ' [33.9292]
'rho_e(um) = ' [0.9673]
'rho_i(um) = ' [26.8007]
'M(Mach) = ' [14.8659]
'M_A(Afven Mach) = ' [3.3160]
'beta(p_th/p_b) = ' [0.0763]
'beta_dy(p_dynamic/p_b) = ' [21.8564]
'Pe_heat (Peclet) = ' [22.7988]
'Re (Reynolds) = ' [9.4045e+005]
'ReM (magnetic Reynolds) = ' [37.8895]
'Hall_e = ' [4.3752]
'Hall_i = ' [0.0054]
'Pr (Prandtl) = ' [1.2057e-004]
'p_b(magn. press., MPa) = ' [72.9000]
'p_th(kin. press., MPa) = ' [5.5619]
'p_dy(ram press., MPa) = ' [1.2292e+003]
'c/omega_pi(um) = ' [945.2472]

riment

Labor

Modeling of magneto

Main dynamics: RT instability ?

Side oscillations: KH instability ?

Where are the accretion columns ? Are the astrophysical accretion models correct ?

Andrea Ciardi et al (2016)

Modeling of magneto-hydrodynamic plasma phenomena: accretion disc
 edge dynamics

Adapted from Camenzind, (1990).

s091 28 ns 22.6 J

s094 48 ns 26.4 J

s098 68 ns 27.8 J

s100 88 ns 26.9 J

s102 108 ns 26.2 J

s102 108 ns 26.2 J

B₀

0

Summary

« Прогресс в лазеростроении:

- ם 1 РW уверенно пройден
- 10 PW ожидается в ближайшем будущем
- « Лазерно-плазменное ускорение заряженных частиц:
 - Квазимоноэнергетичные электронные пучки (до 4 ГэВ)
 - Протонные пучки до 100 МэВ
- Широкие возможности для приложений и исследований в области лабораторной астрофизики