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Ensembles of globally (all-to-all) couples oscillators

◮ Physics: arrays of spin-torque
oscillators, Josephson junctions,
multimode lasers,. . .

◮ Biology and neuroscience: cardiac
pacemaker cells, population of
fireflies, neuronal ensembles. . .

◮ Social behavior: applause in a large
audience, pedestrians on a
bridge,. . .
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Main effect: Synchronization

Mutual coupling adjusts phases of indvidual systems, which start
to keep pace with each other
Synchronization can be treated as a nonequilibrium
phase transition!
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Rather general formulation

d

dt
~xk = ~f (~xk , ~X , ~Y ) individual oscillators or other dynamical objects (microscopic)

~X =
1

N

∑

k

~g(~xk) mean fields (generalizations possible)

d

dt
~Y = ~h(~X , ~Y ) macroscopic global variables

Typical setup for a synchronization problem:
~xk(t) – periodic or chaotic oscillators
~X (t), ~Y (t) periodic or chaotic ⇒ collective synchronous rhythm
~X (t), ~Y (t) stationary ⇒ desynchronization
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Thermodynamic limit

In the limit N → ∞ one can describe the population via the
distribution density that obeys the Liouville equation

∂

∂t
ρ(~x , t) +

∂

∂~x

[

ρ(~x , t)~f (~x , ~X , ~Y )
]

= 0

and the mean fields are

~X (t) =

∫

d~x ρ(~x , t)~g(~x)

The resulting system of nonlinear integro-differential equations is
hard to study
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Description in terms of macroscopic variables

The goal is to describe the ensemble in terms of macroscopic
variables ~W , which characterize the distribution of ~xk ,

~̇W = ~q( ~W , ~Y ) generalized mean fields

~̇Y = ~h(~X ( ~W ), ~Y ) global variables

as a possibly low-dimensional dynamical system
Below: how this program works for phase oscillators by virtue of
the Watanabe-Strogatz and the Ott-Antonsen approaches
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Phase reduction for periodic oscillators

On the limit cycle the phase is well-defined dϕ
dt

= ω0

One can extend the definition of the phase to the whole basin of
attraction of the limit cycle:

dA

dt
= F(A, ϕ)

dϕ

dt
= ω0

Here A is “amplitude” which is stable, while the phase ϕ is
marginally stable
As we know the phase on the limit cycle and close to it ϕ(x), we
get a closed equation for the phase, by substituting in the 1st order
x ≈ x0:

dϕ

dt
=
∂ϕ

∂x

dx

dt
≈
∂ϕ

∂x
[F(x0) + εP(x0, t)] =

= ω0 + ε
∂ϕ

∂x
(x0)P(x0, t) = ω0 + εQ(ϕ, t)

8 / 61



Coupling and averaging of the phase dynamics

If the forcing is from another oscillator with phase ψ, then we have
P(x, ψ) and the coupling equation

dϕ

dt
= ω0 + εQ(ϕ, ψ)

Additional small parameter 1/ω0: fast, compared to the time scale
1/ε, oscillations
Averaging close to the main resonance d

dt
ϕ ≈ d

dt
ψ

Because Q(ϕ, ψ) is 2π-periodic in both arguments, use double
Fourier representation Q(ϕ, ψ) =

∑

m,l Qm,l exp[imϕ− ilψ] and
keep only terms with l = m:

dϕ

dt
= ω0 + εq(ϕ− ψ)

Typical coupling function: q(ϕ− ψ) = sin(ϕ− ψ − β)
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Kuramoto model: coupled phase oscillators

Phase oscillators (ϕk ∼ xk) with all-to-all pair-wise coupling

ϕ̇k = ωk + ε
1

N

N
∑

j=1

sin(ϕj − ϕk + β)

= ε





1

N

N
∑

j=1

sinϕj



 cos(ϕk − β)− ε





1

N

N
∑

j=1

cosϕj



 sin(ϕk − β)

= ωk + εR(t) sin(Θ(t)− ϕk − α) = ωk + εIm(Ze−iϕk+iβ)

System can be written as a mean-field coupling with the mean field
(complex order parameter Z ∼ X )

Z = Re iΘ =
1

N

∑

k

e iϕk
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Synchronisation transition

εc ∼ width of distribution of frequecies g(ω) ∼ “temperature”

Z

small ε: no synchronization,
phases are distributed uni-
formly, mean field vanishes
Z = 0

large ε: synchronization, dis-
tribution of phases is non-
uniform, finite mean field Z 6=
0
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Ott-Antonsen ansatz

[E. Ott and T. M. Antonsen, CHAOS 18 (037113) 2008]

Consider the same system

dϕk

dt
= ω(t) + Im

(

H(t)e−iϕk
)

k = 1, . . . ,N

in the thermodynamic limit N → ∞ and write equation for the
probability density ρ(ϕ, t):

∂ρ

∂t
+

∂

∂ϕ

[

ρ

(

ω +
1

2i
(He−iϕ − H∗e iϕ)

)]

= 0

Expanding density in Fourier modes ρ = (2π)−1
∑

Wk(t)e
−ikϕ

yields an infinite system

dWk

dt
= ikωWk +

k

2
(HWk−1 − H∗Wk+1)
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dW1

dt
= iωW1 +

1

2
(H − H∗W2)

dWk

dt
= ikωWk +

k

2
(HWk−1 − H∗Wk+1)

With an ansatz Wk = (W1)
k we get for k ≥ 2

dWk

dt
= kW k−1

1

[

iωW1 +
1

2
(H − H∗W 2

1 )

]

ie all the infite system is reduced to one equation.
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OA equation for the Kuramoto model

Because W1 = 〈e iϕ〉 = Z we get the Ott-Antonsen equation

dZ

dt
= iωZ +

1

2
(H − H∗Z 2)

The forcing in the Kuramoto-Sakaguchi model is due to the mean
field H = Ze iβ

One obtains a closed equation fro the dynamics of the mean field:

dZ

dt
= iωZ +

ε

2
e iβZ −

ε

2
e−iβ |Z |2Z

Closed equation for the real order parameter R = |Z |:

dR

dt
=
ε

2
R(1− R2) cosβ
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Simple dynamics in the Kuramoto-Sakaguchi model

dR

dt
=
ε

2
R(1− R2) cosβ

Attraction: −π
2 < β < π

2 =⇒
Synchronization, all phases identical ϕ1 = . . . = ϕN , order
parameter large R = 1
Repulsion: −π < β < −π

2 and π
2 < β < π =⇒

Asynchrony, phases distributed uniformely, order parameter
vanishes R = 0
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Application to nonidentical oscillators

Assuming a distribution of natural frequencies g(ω), one
introduces Z (ω) = ρ(ω)e iΦ(ω) and obtains the Ott-Antonsen
integral equations

∂Z (ω, t)

∂t
= iωZ +

1

2
Y −

Z 2

2
Y ∗

Y = e iβ〈e iϕ〉 = e iβ
∫

dω g(ω)Z (ω)
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OA equations for Lorentzian distribution of
frequencies

If

g(ω) =
∆

π((ω − ω0)2 +∆2)

and Z has no poles in the upper half-plane, then the integral
Y =

∫

dω g(ω)Z (ω) can be calculated via residues as
Y = Z (ω0 + i∆)
This yields an ordinary differential equation for the order parameter
Y

dY

dt
= (iω0 −∆)Y +

1

2
ε(e iβ − e−iβ |Y |2)Y

Hopf normal form / Landau-Stuart equation/ Poincaré oscillator

dY

dt
= (a + ib − (c + id)|Y |2)Y
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Summary of OA ansatz

◮ An invariant parametrization of the distribution density - OA
invariant manifold

◮ Stability has been claimed for non-identical oscillators

◮ Valid in thermodynamic limit only

◮ Restricted to pure sine-coupling
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Watanabe-Strogatz (WS) ansatz

[S. Watanabe and S. H. Strogatz, PRL 70 (2391) 1993; Physica D 74

(197) 1994]

Ensemble of identical oscillators driven by the same complex field
H(t) and the real field ω(t)

dϕk

dt
= ω(t) + Im

(

H(t)e−iϕk
)

k = 1, . . . ,N

This equation also describes the dynamics of the rear wheel of a
bicycle if the front one is driven
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Möbius transformation

Rewrite equation as

d

dt
e iϕk = iωk(t)e

iϕk +
1

2
H(t)−

e i2ϕk

2
H∗(t)

Möbius transformation from N variables ϕk to complex z(t),
|z | ≤ 1, and N new angles ψk(t), according to

e iϕk =
z + e iψk

1 + z∗e iψk

Since the system is over-determined, we require
N−1

∑N
k=1 e

iψk = 〈e iψk 〉 = 0
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WS equations

Direct substitution allows one (1 page calculation) to get WS
equations

ż = iωz +
H

2
−

H∗

2
z2

ψ̇k = ω + Im(z∗H)

Remarkably: dynamics of ψk does not depend on k , thus
introducing ψk = α(t) + ψ̃k we get constants ψ̃k and 3 WS
equations

dz

dt
= iωz +

1

2
(H − z2H∗)

dα

dt
= ω + Im(z∗H)

Three dynamical variables + (N − 3) integrals of motion
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Interpretation of WS variables

We write z = ρe iΦ, then

e iϕk = e iΦ(t) ρ(t) + e i(ψ̃k+α(t)−Φ(t))

ρ(t)e i(ψ̃k+α(t)−Φ(t)) + 1

ρ measures the width of the bunch:
ρ = 0 if the mean field Z =

∑

k e
iϕk

vanishes
ρ = 1 if the oscillators are
fully synchronized and |Z | = 1

Φ is the phase of the bunch

Ψ = α−Φ measures positions of individ-
ual oscillators with respect to the bunch

ρ

Φ

Ψ
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Summary of WS transformations

◮ Works for a large class of initial conditions [does not work if
the condition 〈e iψk 〉 = 0 cannot be satisfied, eg if large
clusters exist]

◮ Applies for any N, allows a thermodynamic limit where
distribution of ψ̃k is constant in time, and only z(t), α(t)
evolve

◮ Applies only if the r.h.s. of the phase dynamics contains 1st
harmonics sinϕ, cosϕ

◮ Applies only if the oscillators are identical and identically
driven
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Complex order parameters in WS variables

Complex order parameter can be represented in WS variables as

Z =
∑

k

e iϕk = ρe iΦγ(ρ,Ψ) γ = 1+(1−ρ−2)
∞
∑

l=2

Cl(−ρe
−iΨ)l

where Cl = N−1
∑

k e
ilψk are Fourier harmonics of the distribution

of constants ψk

Important simplifying case:
Uniform distribution of constants ψk

Cl = 0 ⇒ γ = 1 ⇒ Z = ρe iΦ = z

In this case WS variables yield the order parameter directly
and the WS equations are the OA equations
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Relation WS ↔ OA

◮ OA is the same as WS for N → ∞ and for the uniform
distribution of constants ψk

◮ A special familly of distributions satisfying Wk = (W1)
k is

called OA manifold, it corresponds to all possible Möbius
transformation of the uniform density of constants

◮ OA is formulated directly in terms of the Kuramoto order
parameter

◮ For identical oscillators OA manifold is not attractive, but
neutral
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Two main types of synchronization

◮ Kuramoto-type synchronization:
◮ Mean field is periodic
◮ all or some oscillators are locked by the mean field

◮ Partial synchronization:
◮ Mean field is periodic
◮ oscillators are not locked by the mean field – quasiperiodic

dynamics
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Linear vs nonlinear coupling I

◮ Synchronization of a periodic autonomous oscillator is a
nonlinear phenomenon

◮ it occurs already for infinitely small forcing

◮ because the unperturbed system is singular (zero Lyapunov
exponent)

In the Kuramoto model “linearity” with respect to forcing is
assumed

ẋ = F(x) + ε1f1(t) + ε2f2(t) + · · ·

ϕ̇ = ω + ε1q1(ϕ, t) + ε2q2(ϕ, t) + · · ·
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Linear vs nonlinear coupling II

Strong forcing leads to “nonlinear” dependence on the forcing
amplitude

ẋ = F(x) + εf(t)

ϕ̇ = ω + εq(1)(ϕ, t) + ε2q(2)(ϕ, t) + · · ·

Nonlineraity of forcing manifests itself in the
deformation/skeweness of the Arnold tongue and in the amplitude
depnedence of the phase shift

forcing frequencyfo
rc
in
g
am

p
lit
u
d
e
ε

linear nonlinear
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Linear vs nonlinear coupling III

Small each-to-each coupling ⇐⇒ coupling via linear mean field

1 N2 3

Σ
X

Y

linear
unit

Strong each-to-each coupling ⇐⇒ coupling via nonlinear mean
field
[cf. Popovych, Hauptmann, Tass, Phys. Rev. Lett. 2005]

1 N2 3

Σ
X

Y

nonlinear
unit
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Nonlinear coupling: a minimal model

We take the standard Kuramoto-Sakaguchi model

ϕ̇k = ω+Im(He−iϕk ) H ∼ εe−iβZ Z =
1

N

∑

j

e iϕj = Re iΘ

and assume dependence of the acting force H on the “amplitude”
of the mean field R :

ϕ̇k = ω + A(εR)εR sin(Θ− ϕk + β(εR))

E.g. attraction for small R vs repulsion for large R

30 / 61



WS/OA equations for the nonlinearly coupled
ensemble

dR

dt
=

1

2
R(1− R2)εA(εR) cosβ(εR)

dΦ

dt
= ω +

1

2
(1 + R2)εA(εR) sinβ(εR)

dΨ

dt
=

1

2
(1− R2)εA(εR) sinβ(εR)
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Full vs partial synchrony

All regimes follow from the equation for the order parameter

dR

dt
=

1

2
R(1− R2)εA(εR) cosβ(εR)

Fully synchronous state: R = 1, Φ̇ = ω + εA(ε) sinβ(ε)
Asynchronous state: R = 0
Partially synchronous bunch state

0 < R < 1 from the condition A(εR) = 0:
No rotations, frequency of the mean field = frequency of the

oscillations
Partially synchronized quasiperiodic state

0 < R < 1 from the condition cosβ(εR) = 0:
Frequency of the mean field Ω = ϕ̇ = ω ± A(εR)(1 + R2)/2
Frequency of oscillators ωosc = ω ± A(εR)R2
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Self-organized quasiperiodicity

◮ frequencies Ω and ωosc depend on ε in a smooth way
=⇒ generally we observe a quasiperiodicity

◮ attraction for small mean field vs repulsion for large mean field
=⇒ ensemble is always at the stabilty border
β(εR) = ±π/2, i.e. in a

self-organized critical state

◮ critical coupling for the transition from full to partial
synchrony:
β(εq) = ±π/2

◮ transition at “zero temperature” like quantum phase transition
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Simulation: loss of synchrony with increase of
coupling
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Simulation: snapshot of the ensemble

◮ non-uniform distribution of
oscillator phases, here for
ε− εq = 0.2

◮ different velocities of oscillators
and of the mean field

Re(Ak)

Im
(A

k
)
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Experiment

[Temirbayev et al, PRE, 2013]

Linear coupling Nonlinear coupling
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Chimera states

Y. Kuramoto and D. Battogtokh observed in 2002 a symmetry
breaking in non-locally coupled oscillators
H(x) =

∫

dx ′ exp[x ′ − x ]Z (x ′)

This regime was called “chimera” by Abrams and Strogatz
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Chimera state as a pattern formation problem (with
L. Smirnov, G. Osipov)

Start with equations for the phases:

∂tφ = ω + Im

[

exp
(

−iφ (x , t)− iα
)

∫

G (x − x̃) exp
(

iφ (x̃ , t)
)

dx̃

]

,

G (y) = κ exp
(

−κ |y |
)/

2

Introduce coarse-grained complex order parameter
Z (x , t)= 1

2δ

∫ x+δ
x−δ exp

[

iφ (x̃ , t)
]

dx̃ and reduce to a set of OA
equations

∂tZ = iωZ +
(

e−iαH − eiαH∗Z 2
)/

2 .

H (x , t) =

∫

G (x − x̃)Z (x̃ , t) dx̃ ⇔ ∂2xxH − κ2H = −κ2Z

System of partial differential equations can be analysed by
standard methods
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Chimera in two subpopulations

Model by Abrams et al:

ϕ̇a
k = ω + µ

1

N

N
∑

j=1

sin(ϕa
j − ϕa

k + α) + (1− µ)

N
∑

j=1

sin(ϕb
j − ϕa

k + α)

ϕ̇b
k = ω + µ

1

N

N
∑

j=1

sin(ϕb
j − ϕb

k + α) + (1− µ)

N
∑

j=1

sin(ϕa
j − ϕb

k + α)

Two coupled sets of WS/OA equations: ρa = 1 and ρb(t)
quasiperiodic are observed
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Chimera in experiments I

Tinsley et al: two populations of chemical oscillators
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Chimera in experiments II
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Sets of oscillator populations

One population of nearly identical phase oscillators is described by
WS/OA equations ⇒ effective collective oscillator, complex
amplitude = complex order parameter 0 ≤ |Z | ≤ 1

Several such populations ⇒ system of coupled “oscillators”
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Non-resonantly interacting ensembles (with M.
Komarov)

ω1

ω2

ω3

ω4

Frequencies are different – all interactions are non-resonant (only
amplitudes of the order parameters involved)

ρ̇l = (−∆l − Γlmρ
2
m)ρl + (al + Almρ

2
m)(1− ρ2l )ρl , l = 1, . . . , L
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Competition for synchrony
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Heteroclinic synchrony cycles
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Chaotic synchrony cycles

Order parameters demonstrate chaotic oscillations
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Resonantly interacting ensembles (with M.
Komarov)

ω1

ω2

ω3

Most elementary nontrivial resonance ω1 + ω2 = ω3

Triple interactions:

φ̇k = . . .+ Γ1
∑

m,l
sin(θm − ψl − φk + β1)

ψ̇k = . . .+ Γ2
∑

m,l
sin(θm − φl − ψk + β2)

θ̇k = . . .+ Γ3
∑

m,l
sin(φm + ψl − θk + β3)
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Set of three OA equations

ż1 = z1(iω1 − δ1) + (ǫ1z1 + γ1z
∗
2 z3 − z21 (ǫ

∗
1z

∗
1 + γ∗1z2z

∗
3 ))

ż2 = z2(iω2 − δ2) + (ǫ2z2 + γ2z
∗
1 z3 − z22 (ǫ

∗
2z

∗
2 + γ∗2z1z

∗
3 ))

ż3 = z3(iω3 − δ3) + (ǫ3z3 + γ3z1z2 − z23 (ǫ
∗
3z

∗
3 + γ∗3z

∗
1 z

∗
2 ))
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Regions of synchronizing and desynchronizing effect
from triple coupling
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Bifurcations in dependence on phase constants
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Beyond WS and OA theory: bi-harmonic coupling
(with M. Komarov)

ϕ̇k = ωk +
1

N

N
∑

j=1

Γ(φj − φk) Γ(ψ) = ε sin(ψ) + γ sin(2ψ)

Corresponds to XY-model with nematic coupling

H = J1
∑

ij

cos(θi − θj) + J2
∑

ij

cos(2θi − 2θj)
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Multi-branch entrainment

ϕ̇ = ω − εR1 sin(ϕ)− γR2 sin(2ϕ)

(a)

ϕ1−ϕ1 π + ϕ2π − ϕ2

x1

−x1

x2
−x2

(b)

ϕ1−ϕ1

x1

−x1

52 / 61



Self-consistent theory in the thermodynamic limit

Two relevant order parameters Rme
iΘm = N−1

∑

k e
imφk for

m = 1, 2 Dynamics of oscillators (due to symmetry Θ1,2 = 0)

ϕ̇ = ω − εR1 sin(ϕ)− γR2 sin(2ϕ)

yields a stationary distribution function ρ(ϕ|ω) which allows one to
calculate the order parameters

Rm =

∫∫

dϕdω g(ω)ρ(ϕ|ω) cosmϕ, m = 1, 2

Where g(ω) is the distribution of natural frequencies
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Multiplicity at multi-branch locking

Three shapes of phase distribution

ρ(ϕ|ω) =



















(1− S(ω))δ(ϕ− Φ1(ω))+

+ S(ω)δ(ϕ− Φ2(ω))
for two branches

δ(ϕ− Φ1(ω)) for one locked bracnch
C
|ϕ̇| for non-locked

(a)

ϕ1−ϕ1 π + ϕ2π − ϕ2

x1

−x1

x2
−x2

(b)

ϕ1−ϕ1

x1

−x1

0 ≤ S(ω) ≤ 1 is an arbitrary indicator function
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Explicit (parametric) solution of the self-consistent
eqs

We introduce

cos θ = γR2/R , sin θ = εR1/R , R =
√

γ2R2
2 + ε2R2

1 , x = ω/R

so that the equation for the locked phases is

x = y(θ, ϕ) = sin θ sinϕ+ cos θ sin 2ϕ

Then by calculating two integrals

Fm(R , θ) =

∫ π

−π

dϕ cosmϕ

[

A(ϕ)g(Ry)
∂y

∂ϕ
+

∫

|x|>x1

dx
C (x , θ)

|x − y(θ, ϕ)|

]

we obtain a solution

R1,2 = RF1,2(R , θ), ε =
sin θ

F1(R , θ)
, γ =

cos θ

F2(R , θ)
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Phase diagram of solutions
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Stability issues

We cannot analyze stability of the solutions analytically (due to
signularity of the states), but can perform simulations of finite
ensembles
Nontrivial solution coexist with netrally stable asynchronous state
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Perturbation theory for WS integrability (WIth V.
Vlasov and M. Rosenblum)

ϕ̇k = ω(t) + Im
[

H(t)e−iϕk
]

+ Fk , k = 1, . . . ,N .

We seek for a WS equation with a correction term P

ż = iωz +
H

2
−

H∗

2
z2 + P .

Evolution of constants:

ψ̇k = ω+Im(z∗H) + Fk

[

2Re
(

ze−iψk
)

+ 1 + |z |2

1− |z |2

]

−
2Im

[

P
(

z∗ + e−iψk
)]

1− |z |2
.
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Expression for correction in the WS equation:

P =
i

(1− |U|2)N

N
∑

k=1

Fk

[

z(1− Ue−2iψk )+

+ (1 + |z |2)(e iψk − Ue−iψk ) + z∗(e2iψk − U)
]

.

where U = N−1
∑

k exp[i2ψk ]
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Perturbation results in simplest cases

Small nonidentity ∼ ε of oscillators (but still sine-coupling) or
small white noise with intensity ∼ ε2:

Corrections ∼ ε2 to the WS equation; the distribution of constants
deviates from the uniform one also as ∼ ε2

For example, for noise

w(θ) ≈ (2π)−1

(

1− ε2
2ρ2

(1− ρ2)2Ω
sin 2θ

)

P = −ε2
2z(1 + |z |2)

1− |z |2
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Conclusions

◮ Closed equations for the order parameters evolution
(Watanabe-Strogatz variables for identical and Ott-Antonsen
eqs for certain non-identical)

◮ Transition to partial synchronization (self-organized
quasiperiodicity)

◮ Many populations can be treated as effective coupled
oscillators, for which complex amplitude = complex order
parameter

◮ Chimera states as patterns in PDEs for complex order
parameter

◮ Resonantly and nonresonantly interacting populations

◮ Bi-harmonic coupling: multi-branch entrainment

◮ Beyond validity of WS/OA approaches a perturbation method
has been constructed
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