ВОЛНЫ В ПУЗЫРЬКОВЫХ ЖИДКОСТЯХ (от акустики до термоядерных искр)

Р.И. Нигматулин

РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт океанологии им. П.П. Ширшова

nigmar@ocean.ru

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Механико-математический факультет

> ВОЛНЫ В НЕЛИНЕЙНЫХ СРЕДАХ Нижний Новгород 01.03.2018

Кавитация

Взаимодействие с преградами акустических волн в пузырьковых жидкостях Практические приложения.

Figure 5 Four whales insonify an annular bubble net having the sound speed profile of Figure 4a, and the launch conditions of Figure 4b.

D.m. Fun

Figure 1 Schematic of a humpback whale creating a bubble net. The whale dives beneath a shoal of prey and slowly begins to spiral upwards, blowing bubbles as it does so, creating a hollow-cored cylindrical bubble net. The prey tend to congregate in the centre of the cylinder. Then the whale dives beneath the shoal, and swims up through the bubble-net with its mouth open to consume the prey ('lunge feeding'). (Image courtesy of cetacea.org)

На озере Авраама в Канаде замороженные пузыри, внутри которых содержится не воздух, а горючий газ — метан. Если проколоть пузырь вблизи огня, он взорвется, выбрасывая вверх пламя.

Bubbles might have helped start Life on Earth, forming of Basic Organic Chemicals

livescience

Thin 'Bubble' Coatings Could Hide Submarines from Sonar

By Charles Q. Choi, Live Science Contributor | February 4, 2015 06:54am ET

Sailors aboard the USS Topeka (SSN 754) prepare the mooring lines as the submarine enters port on Nov. 24, 2004. Credit: DoD photo by Petty Officer 2nd class Johansen Laurel, U.S. Navy.

Bubble-filled rubbery coatings may one day assist make submarines virtually undetectable to sonar, researchers say.

To avoid detection by sonar, military submarines are often covered with sound-absorbing tiles called anechoic coatings. These perforated rubber tiles are typically approximately 1 inch (2.5 centimeters) thick.

In the past decade, research has suggested that the same degree of stealth could be provided by much thinner coatings filled with vacant cavities. When hit by sound waves, empty spaces in an elastic material can oscillate in size, "so it will dissipate a lot of energy," said lead study author Valentin Leroy, a physicist at the University Paris Diderot in France.

However, figuring out how to optimize such materials for stealth applications previously involved timeconsuming simulations. To simplify the problem, Leroy & his colleagues modeled the empty spaces in the elastic material as spherical bubbles, with each giving off a springy response to a sound wave that depended on its size & the elasticity of the surrounding material. This simplification helped them derive an equation that could optimize the material's sound absorption to a given sound frequency.

The researchers designed a "bubble meta-screen," a soft layer of silicone rubber that is only 230 microns thick, which is a little more than twice the average width of a human hair. The bubbles inside were cylinders measuring 13 microns high & 24 microns wide, & separated from each other by 50 microns.

In underwater experiments, the scientists bombarded a meta-screen placed on a slab of steel with ultrasonic frequencies of sound. They found that the meta-screen dissipated more than 91 percent of the incoming sound energy & reflected less than 3 percent of the sound energy. For comparison, the bare steel block reflected 88 percent of the sound energy.

Труба – замкнутая и недеформируемая

Thermophysical parameters in bubbly liquid

- *a* radius of the bubbles (monodispersed mixture)
- *n* number concentration of the bubbles

 $\alpha_{\rm G} = \frac{4}{3}\pi a^3 n$ - volume concentration of the bubbles ($\alpha_{\rm G}$ < 0,1)

- ho_L° density of the liquid $\left(
 ho_L^{\circ} \approx 10^3 \, kg/m^3\right)$
- $\rho_{G}^{^{\circ}}$ density of the gas $\left(\rho_{L}^{^{\circ}}\approx 10^{0}\,kg/m^{3}\right)$

 $\rho \approx \rho_L = \rho_L^{\circ} \left(1 - \alpha_G \right) \text{ - density of two phase mixture}$

- λ_i thermal conductivity of the liquid (*i* = L) and gas (*i* = G)
- \mathbf{c}_i heat capacity of the liquid (*i* = L) and gas (*i* = G)
- C_i -sound speed in the liquid (*i* = L) and gas (*i* = G)
- γ_{G} adiabatic exponent of the gas
- μ_L viscosity of the liquid
- Σ surface tension

CONTINUA MECHANICS of BUBBLY LIQUIDS

$$\mathbf{v}_1 = \mathbf{v}_2 = \mathbf{v},$$

$$\alpha_2 = \frac{4\pi}{3} a^3 n \qquad \qquad \alpha_2^2 << 1$$

$$\frac{\partial \boldsymbol{n}}{\partial t} + \frac{\partial \left(\boldsymbol{n} \boldsymbol{v}^{k}\right)}{\partial \boldsymbol{x}^{k}} = 0 \qquad \rho_{2}^{\circ} \boldsymbol{a}^{3} = \text{const}$$

$$\rho_2^{\circ} \equiv \rho_G^{\circ} \ll \rho_1^{\circ} \equiv \rho_L^{\circ} \qquad \rho = \rho_1^{\circ} \left(1 - \alpha_2 \right)$$

$$\frac{\partial \rho_1^{\circ} \alpha_1}{\partial t} + \frac{\partial \left(\rho_1^{\circ} \alpha_1 \boldsymbol{v}^k \right)}{\partial \boldsymbol{x}^k} = 0$$

$\partial \rho_2^{\circ} \alpha_2$	$\partial \left(\rho_2^{\circ} \alpha_2 v^k \right) = 0$
∂t	$\partial x^k = 0$

$$a(1-\varphi)\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{p_2 - p_1 - 2\Sigma / a}{\rho_1^\circ} - \frac{4\mu_1 w}{a\rho_1^\circ} - (1-\varphi)\frac{3w^2}{2},$$
$$\frac{\mathrm{d}a}{\mathrm{d}t} = w$$
$$\varphi = \varphi(\alpha_2)$$

 $\rho \frac{d\mathbf{v}}{dt} = -\vec{\nabla} p + \rho \mathbf{g} \qquad p = p_1 + \alpha_2 \left(1 - \alpha_2^{\frac{1}{3}}\right) \rho_1^{\circ} w^2$ $\frac{dp_2}{dt} = \frac{3(\gamma_2 - 1)}{a} \vartheta_{12} - \frac{3\gamma_2 p_2 w_2}{a} \qquad p_1 - p_{10} = C_L^2 \left(\rho_1^{\circ} - \rho_{10}^{\circ}\right)$ $p_2 = \rho_2^{\circ} R_2 T_2$

if
$$\alpha_2 \ll \sqrt{\frac{p}{\rho_L^\circ C_L^2}} \approx 10^{-4}$$

 $\nabla^k \nabla^k p = F_p(p, p_2, \alpha_2, a, w)$
if $\mathbf{v} = \vec{\nabla} \Phi$ $\nabla^k \nabla^k \Phi = F_v(\alpha_2, a, w)$

$$\frac{\mathrm{d}p_2}{\mathrm{d}t} = f^{(p2)}(p, p_2, \alpha_2, a, w, \vartheta_{12})$$
$$\frac{\mathrm{d}\alpha_2}{\mathrm{d}t} = f^{(\alpha 2)}(p, p_2, \alpha_2, a, w)$$
$$\frac{\mathrm{d}w}{\mathrm{d}t} = f^{(w)}(p, p_2, \alpha_2, a, w)$$
$$\mathrm{d}a$$

)

$$\frac{\mathrm{d}a}{\mathrm{d}t} = W$$

Hydrodynamic Equations for Bubbly Liquids

$$\frac{\partial \rho_{\rm L} \alpha_{\rm L}}{\partial t} + \nabla^k \rho \alpha_{\rm L} v^k = 0$$
$$\frac{\partial \rho_{\rm G} \alpha_{\rm G}}{\partial t} + \nabla^k \rho \alpha_{\rm G} v^k = 0$$
$$\alpha_{\rm L} + \alpha_{\rm G} = 1$$

Mass conservation equations for the liquid (no phase transitions)

Mass conservation equations for the gas (no phase transitions)

 $\frac{\partial n}{\partial t} + \nabla^k n v^k = 0$ Bubble number conservation equations (no coagulation and breaking of the bubbles

Momentum conservation equations (no slip velocity of the phases)

 $p = \alpha_L p_L + \alpha_G (p_G - 2\Sigma/a) \approx p_L - Averaged$ pressure for the mixture

 $a\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{p_{\mathrm{G}} - p_{\mathrm{L}} - 2\Sigma/a}{\rho_{\mathrm{I}}^{\circ}} - \frac{4\mu_{\mathrm{L}}w}{\rho_{\mathrm{I}}^{\circ}} - \frac{3w^{2}}{2}$ Raileigh-Plesset equation for the joint deformation of the phases

 $\rho \frac{\mathrm{d} v^k}{\mathrm{d} t} = \nabla^k p + \rho g^k$

$$\frac{\mathrm{d}p_{\mathrm{G}}}{\mathrm{d}t} = \frac{3(\gamma_{\mathrm{G}} - 1)}{a} \vartheta_{\mathrm{LG}} - \frac{3\gamma_{\mathrm{G}}p_{\mathrm{G}}W}{a}$$

Equation for the pressure of the gas in the bubble

Classic Equation of State

$$\rho = F(p, T)$$

Local Deformational Inertia of Bubbly Liquids

$$\rho_{\rm L} a^3 \ddot{\rho} = F(p, \rho, \mu_{\rm L} \dot{\rho}, \dots, \nu_{\rm G}^{(T)}, \nu_{\rm L}^{(T)}).$$

For Compressible Bubbly Liquid with Incompressible Liquid Phase $\rho_{\rm L}^{\circ} = const$

POISSON equations for Pressure and for Velocity Potential

$$\nabla^{k} \nabla^{k} p = F_{p}(p, p_{G}, \alpha_{G}, a, w)$$

$$\nabla^{k} \nabla^{k} \Phi = F_{\Phi}(\alpha_{G}, a, w) \qquad (v^{k} = \nabla^{k} \Phi)$$

$$\frac{dp_{G}}{dt} = f_{p}(p_{G}, a, w, \vartheta_{LG})$$

$$\frac{d\alpha_{G}}{dt} = f_{\alpha}(a, w)$$

$$\frac{dw}{dt} = f_{w}(p, p_{G}, a, w, \eta)$$

$$\frac{da}{dt} = w$$

Theorem: The Bubbly Liquid is the Most Paradoxical Fluid

THERMAL RELAXATION

Figure 6.7.8 Predicted (A. A. Gubaidullin) and experimental (V. V. Kuznetsov et al., 1977) data on the attenuation of a triangular impulse whose reference oscillogram at r = 0 is shown by line K (intensity of the original impulse $\Delta \bar{p}_0 = \Delta p_0/p_0 = 0.48$, duration (length) $\Delta t_0 = 1.0$ microseconds) related to water with bubbles of carbon dioxide (CO₂), helium (He), and hypothetical adiabatic (A) gas. The mixture parameters: $p_0 = 0.01$ MPa, $T_0 = 293$ K, $\alpha_{20} = 0.01$, $a_0 = 1.4$ mm. Figure 6.7.8*a* shows variation of maximum pressure with depth *r*; Fig. 6.7.8*b* shows both predicted and experimental pressure oscillograms p(t) for the CO₂ bubble case on depth r = 0.6 m.

$$d_{g0} = 0.01$$
 $a_0 = 1.4 \text{ mm}$
 $m_{g0} = \frac{S_g^0 \, \alpha_{g0}}{S_e^0 \, \alpha_{e0}} \sim 10^{-5}$

AMPLIFICATION OF SHOCK WAVES WHEN REFLECTING FROM BUBBLY SHIELDS

AMPLIFICATION OF SHOCK WAVES IN CLAY SUSPENSIONS

Burgers-Korteweg-de Vries Equation

$$\frac{\partial \boldsymbol{p}}{\partial t} + \boldsymbol{p}\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{x}} - \boldsymbol{\mu}^{(\text{ef})}\frac{\partial^2 \boldsymbol{p}}{\partial \boldsymbol{x}^2} + \beta \frac{\partial^3 \boldsymbol{p}}{\partial \boldsymbol{x}^3} = 0$$

For Simple Waves

 $\left(\Delta oldsymbol{p}
ight)^2 \ll oldsymbol{p}_0$

1. Лорд Рэлей (вязкость $v_L = 0$, $\rho_L = const$)

2. Академик Е.И. Забабахин (вязкость $v_L > 0, \rho_L = const, PMM, 1960)$

3. Газ или пар в пузырьке

- Теплопроводность
- Сжимаемость жидкости
- Конденсация или испарение
- УДАРНЫЕ ВОЛНЫ
- Диссоциация
- Экстрмальные давления
- Экстремальные температуры
- Ионизация
- НЕУСТОЙЧИВОСТЬ
 - сферической фокусировки !!!!

Однопузырьковая сонолюминесценция

ПФРАЛОКСЫ ОЛНОПУЗЫРЬКОВОЙ СОНОЛЮМИНЕСЦЕНЦИИ

• ЧРЕЗВЫЧАЙНО БЫСТРЫЙ коллапс с «обострением»

d*t*_F ~ 50 ps

Излучение

света

- Равновесный размер пузырька
 a₀ ~ 3 5 мкм
- Адиабатическая температура газа *T*_{max} ~ 5000 K (?!)
- Эффект примесей благородных газов

• Эффект холодной воды

 $\delta t_{\rm F} \sim 50 \text{ ps} \longrightarrow 0.4 \text{ s}$

The first approximation for the bubbles collapse in the cluster

- **r**'- Lagrangian coordinate for two phase continuum in the cluster,
- r Eulerian radial micro-coordinate for testing bubble,
- x(r', t) Eulerian radial micro-coordinate for two phase continuum in the cluster

R. Nigmatulin "Dynamics of Multiphase Media", Hemisphere, 1990

R. Nigmatulin, et al. The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion, *Physics of Fluids*, Vol. 17, 107106, 1-31, 2005.

1. Пузырьковый кластер и 3-х концентрически вложенных додекаэдров

2. Тот же объем кластера, н с хаотическим возмущение пузырьков

$$t^* = 2.7 \cdot 10^{-5} s, \ R_0 = 0.25 mm, \ P_0 = 0.1 MPa, \ riangle P = 0.3 MPa, \ T_0 = 293 K, \ c_l = 1500 m/s.$$

 $t^* = 2.7 \cdot 10^{-5} s, \ R_0 = 0.25 mm, \ P_0 = 0.1 MPa, \ riangle P = 0.3 MPa, \ T_0 = 293 K, \ c_l = 1500 m/s.$

DISTERBANCES OF SPHERICAL SHAPE DURING INTENSIVE COLLAPSE of VAPOR BUBBLE

Влияние вязкости жидкости (дейтерированного ацетона) при сжатии на рост амплитуды возмущений сферической формы пузырька с длиной волны λ:

- несущественно при $\lambda > R/3;$
- возрастает по мере уменьшения λ так, что при λ < R/6 (i > 40) рост амплитуды довольно быстро уменьшается;

Disturbances of nonsphericity

ДЕФОРМАЦИИ ПУЗЫРЬКОВ ПРИ СОВМЕСТНЫХ КОЛЕБАНИЯХ В ПУЧНОСТИ ДАВЛЕНИЯ СТОЯЧЕЙ ВОЛНЫ

Воздушные пузырьки в воде

 $p_{\infty} = p_0 - p_a \sin \omega t$, $p_0 = 16$ ap, $p_a = 1.26$ ap,

 $\omega/2\pi \kappa I20$

<u>При t = 0</u>: пузырьки одинаковые, сферические с радиусом R = 3 мкм, расстояние между центральным и боковыми пузырьками d = 200 мкм

Рис. 2. Радиальные колебания центральных пузырьков (во всех конфигурациях одинаковы)

Деформации центрального пузырька

Рис.3. Изменение амплитуды гармоник, определяющих несферичность центральных пузырьков в рассматриваемых конфигурациях (рис. 1).

Рис.4. Центральные пузырьки в момент их максимальной несферичности.

В линейной и плоской конфигурациях центральные пузырьки сильнее деформируются по второй гармонике (искажения по другим гармоникам на несколько порядков меньше).

В пространственной конфигурации центральный пузырек деформируется сильнее по четвертой гармонике (искажения по второй гармонике отсутствуют, а по другим они на несколько порядков меньше). Максимум этих деформаций на 4 порядка ниже, чем у центральных пузырьков в линейной и плоской конфигурациях.

Исследование поддержано РНФ (проект №17-11-01135, руководитель академик Р.И. Нигматулин).

КОЛЛАПС КАВИТАЦИОННОГО ПУЗЫРЬКА В АЦЕТОНЕ И ТЕТРАДЕКАНЕ

КОЛЛАПС КАВИТАЦИОННОГО ПУЗЫРЬКА В АЦЕТОНЕ И ТЕТРАДЕКАНЕ

РОСТ МАЛЫХ ВОЗМУЩЕНИЙ СФЕРИЧНОСТИ ПУЗЫРЬКА

Рост несферичности кавитационного пузырька в виде отдельных сферических гармоник степени *n* при коллапсе

Несферичность пузырька в АЦЕТОНЕ возрастает при коллапсе в 65 раз сильнее, чем в ТЕТРАДЕКАНЕ.

ДЕФОРМАЦИИ УДАРНОЙ ВОЛНЫ В ПОЛОСТИ КАВИТАЦИОННОГО ПУЗЫРЬКА ПРИ ЕГО РАСШИРЕНИИ-СЖАТИИ В СТРИМЕРЕ А.А. Аганин, А.И. Давлетшин, Т.Ф. Халитова, ИММ КазНЦ РАН

Рис.1. Форма центрального пузырька и ударной волны в его полости в момент начала смыкания ударной волны при трех значениях *d*

В принятых условиях фокусировка ударной волны в центре пузырька завершается столкновением верхней и нижней частей ее поверхности, подобно столкновению плоских ударных волн. С уменьшением расстояния между пузырьками поперечный размер ударной волны в начале столкновения возрастает.

Рис.2. Поля давления и температуры в пузырьке и окружающей жидкости в областях *r* ≤ 35 мкм (верхний ряд) и $r \leq 8$ мкм (нижний ряд)

руководитель академик Р.И.Нигматулин)

WAVES from SPACE

Приходят волны к нам из дали синей, Взлетают в брызгах, умирают пеной. Валерий Брюсов