Hidden nonlinear oscillations in dynamical systems

Gennady A. Leonov, Nikolay V. Kuznetsov
Saint-Petersburg State University

g.leonov@spbu.ru, nkuznetsov239@gmail.com

Gennady A. Leonov, Nikolay V. Kuznetsov Scientific school “Nonlinear waves-2018”, Nizhny Novgorod 1/47



Content

Attractors in dynamical systems
Dimension of attractors
Homoclinic orbits

Gennady A. Leonov, lay V. Kuznetsov Scientific school “Nonlinear waves-2018”, Nizhny Novgorod 2/47



Attractors in dynamical systems

[Attractors is bounded, closed, invariant, and attracting (in some sense) set. ]

= f(u), uweR™ f:R"™— R" solution u(t,ug) such that «(0,ug) = ug.
(i) (local) attractor is a locally attractive set (for a “neighborhood” of the set)
(ii) global attractor is a globally attractive set (for the “whole” phase space)

It is reasonable to consider only minimal global and local attractors, i.e. the smallest
bounded closed invariant set possessing the property (ii) or (i).
Various types of attraction: Milnor attractor, B-attractor and others

An oscillation can be visualized numerically if initial data from its vicinity lead to a
long-term behavior that approaches the oscillation. From a computational point of
view, such an oscillation (or a set osc.) is called an attractor, and its attracting set is
called the basin of attraction. How to choose initial data in the basin of attraction?

Sustained chaos vs Transient chaos
Self-excited attractor vs Hidden attractor
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Numerical localization of attractors

An oscillation can be visualized numerically if initial data from its vicinity lead to a long-
term behavior that approaches the oscillation. From a computational point of view, such
an oscillation (or a set osc.) is called an attractor, and its attracting set is called the basin
of attraction. How to choose initial data in the basin of attraction?
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H. Barkhausen (192x) selbsterregten Schwingungen;

A. Andronov (1929) self (excited) oscillations : the generation and mainte-
- nance of a periodic motion by a source of power that lacks any corresponding
periodicity. [transition process to the limit cycle in Van der Pol model]

Van der Pol Lorenz
X=y ' X=-s(x-y) -
y=—x+e(1—x2)y,‘ Y=IX—y—-XZ - i
: z=-bz +xy

If attractors’s basin of at
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Visualization of the Lorenz attractor (1963) and multistability

r=28. 0=10. b=38/3 : self-excited with respect to Sn. S+. monostabilitv

Existence of the Lorenz attractor which is not connected with equilibria?
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Self-excited and hidden attractors: Chua circuit

Leonov-Kuznetsov, 2009: An attractor is called a self-excited attractor if its basin
of attraction intersects with small neighborhood of an equilibrium, otherwise it is
called a hidden attractor. E.g. hidden attractors are attractors in the systems
without equilibria, or with the only stable equilibrium (a case of multistability).
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y=z—y+z,
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Two symmetric hidden chaotic attractors (.A}l]’fiden - green
domains) in the classical Chua system. trajectories (red)
from unstable manifolds M‘"‘St of two saddle points S 2
are either attracted to the IocaIIy stable zero equilibrium
Fpy, or tend to infinity; trajectories (black) from stable
manifolds Mf)ti tend to Fp or S1,2

v Leonov G.A. Kuznetsov N.V., Vagaitsev V.I,
Localization of hidden Chua’s attractors,
Physics Letters A, 375(23), 2011, 2230-2233
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Criteria of periodic solution existence (DFM)

x=Px+qi(r*x) : W(p)=c*(P—pl)tq, ImW(iw)=0, k=—ReW(iw)) !
x=Pox+qp(rx): Po=P+kqr*, A\ =+iw, RAT2, <0, p=1)—kr'x
X:Sy; A= S_1P0S, b= (b17b27b3)* :S_lqa c'= (1,0,(33)* =r’S

Harmonic linearization, linear transformation, small parameter method

U1 =—wy2+biep(y1 + c3y3)
Y2= wyi+baep(y1 + c3y3)
y3= Azys+bzep(y1 + c3ys)
yi(As + A3)ys < —2dlys|*

y(0)€Q={y1 € a1, as],y2=0, lys| < De}, Fy(0)=y(T),T=22+0(¢)

y2(t) =sin(wt)y1(0)+O0(e)
y3(t)=eA3ty3(0)+On_2(c)
t e (0,T]

27/ w
Theorem. If there exists ag > 0 : ®(ag) = [ ¢(cos(wt)ag) cos(wt)dt = 0
0

and bl%t(la)}a:ao < 0 then exists periodic solution x(¢) = Sy(¢) with initial data

x(0)=S (ap+0(g), 0, On_2(e))*.
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Hidden oscillation localization: analytical-numerical procedure

(1) x=F(x) (2) x=Fr=qu(x) (3) X=F),c(a,) (%), Fazp(x)=F(x)

In the procedure, computational methods and the engineering notion of a transient

process are combined to study oscillations:

1) Choose or add a parameter A in such a way that for A = a analytically or
computationally one can find a nontrivial attractor Ay in (2)

(often this attractor has a simple form, e.g.: periodic, self-excited)

2) Localize an attractor A in (1): numerically follow transformation of .A; with in-
creasing j=0: \g=a, ..., j=m: Ay, =b (A=A, in (3)

1. If all points of A¢ are in the basin of attraction of A; (oscillating attractor of (3) with j = 1),
then a trajectory x!(¢) with an initial data x!(0) = x°(0) € A is attracted and identified .A; of

(3) with j=1.
2. Numerically investigate changes to the shape of A;. If the change in A (from A; to A\j 41 in
(3)) does not cause a loss of the stability bifurcation of A;: i.e. if, in the computation, the
trajectory x711(¢) is not attracted to equilibria or co (for suff. large time interval [0, 7)), then
xIt1(¢) identify an attractor \A;41, and one can start trajectory x712(¢) with

x312(0) = xIT1(T) (last point on previous step).

v_ Leonov G.A., Kuznetsov N.V., Mokaev T.N., Homoclinic orbits, and self-excited and hidden attractors in
a Lorenz-like system describing convective fluid motion, European Physical Journal Special Topics, 224,

2015, 1421-1458
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Scenario of transition to chaos in Chua circuit:
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5
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Hidden Chua attractors and multistability: 5 coexisting attractors

“Chaotic” generalization of Hilbert's 16th problem: on
the number and disposition of attractors in multi-

dimensional chaotic dynamical systems; e.g., depending
on the degree of polynomials in the rhs of the model.

[Leonov G., Kuznetsov N., On differences and similarities in the
analysis of Lorenz, Chen and Lu systems, Applied Mathematics
and Computation, 256, 2015, 334-343]

What is the maximum number of
coexisting attractors that can be found
in the Chua system? How many of the
coexisting attractors can be hidden?

2 trivial attractors (stable equilibria —
green points) unstable equilibrium (red
point) (grey—2d stable manifold, red-1d
unstable manifold attracted by 2 trivial
attractors);

3 hidden Chua attractors: periodic limit
cycle (orange) and two symmetric chaotic
Chua attractors (blue)

v" Kuznetsov N., Kuznetsova O., Mokaev T., Leonov G., Stankevich N., Hidden attractors localization in
Chua’s circuit via the describing function method, IFAC-PapersOnLine, 50(1), 2017, 2651-2656

v N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L. Chua, Scenario of the birth of hidden attractors in the
Chua circuit, Int. J. of Bifurcation and Chaos, 27(12), 2017, art. num. 1730038
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Hidden attractor in a Lorenz-like system

Glukhovsky—Dolghansky (1980): fluid motion in an ellipsoidal rotating cavity can be
interpreted as one of the models of ocean flows (a > 0)

t=—0(rx—y)—ayz

Y=rr—y—x2 1200 -
Z=—bz+xy 1000 -
b=1,r="700,a=0.0052,0 =4 500
Equilibria: saddle So & 2 stable S12 N 600 -

Trajectories from Sy tend (green) to zero Si 2;
Hidden attractor (blue) coexist with B-attractor

400 -

1000

(green outgoing separatrices of the saddle Sy
attracted to the red equilibria S1,2) 60 4y o f

v' Leonov G.A., Kuznetsov N.V., Mokaev T.N., Hidden attractor and homoclinic orbit in Lorenz-like system
describing convective fluid motion in rotating cavity, Commun Nonlinear Sci Numer Simulat, 28(1-3), 2015,
166-174 (doi: 10.1016/j.cnsns.2015.04.007)

v’ Leonov G.A., Kuznetsov N.V., Mokaev T.N., Homoclinic orbits, and self-excited and hidden attractors in a
Lorenz-like system describing convective fluid motion, European Physical Journal Special Topics, 224, 2015,
1421-1458

Alexander Gluhovsky, Purdue University, USA
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Hidden attractor: Rabinovich model

M.Rabinovich (1978): interactions between waves in plasma (a < 0)

t=—o(x —y) —ayz, o=-—ar 190
Y=rr —y —x2 00
z=—bz+zy e
r=100,a=-—0.009965,b=0.077454, K :Z
Equilibria: saddle S & 2 stable S+ (light green) ' .
Trajectories from Sy tend (blue) to zero S ; ©
Hidden attractor (green) coexist with w0
B-attractor (blue outgoing separatrices of the 20
saddle Sy attracted to the light green S4.) Ot

x Y
v' N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad, M. Shrimali, Finite-time Lyapunov dimension and hidden
attractor of the Rabinovich system, Nonlinear Dynamics, 2018 http://doi.org/10.1007 /s11071-018-4054-z

Mikhail I. Rabinovich: BioCircuits Institute, University of California, San Diego, USA
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Accuracy of simulation: time of observation and shadowing

Lorenz-like model of interaction between waves in plasma: hidden transient chaos

i=—o(r—y)—ayz,
y=rer—y—zxz,
z=—bz+xy,o=—ar,
r=6.485,a=—0.5,0=0.85

S_

So— - Sy

¥ : y R )
LE1 (¢, winit) ¥ !

o LE; (, tinit)

0.4
03
0.005

0.2

01

‘ 300000 400000 500000
0

o 5000 0000 5000 L

v Kehlet, Logg [2015]: for the Lorenz system the time interval of reliable computation (e.g. by
ode45) with 16 significant digits and error 10~% is estimated as [0, 36]; with error 10~8 - [0, 26]!
v Liao, Wang [2014]: reliable chaotic solution of Lorenz equation in the interval [0,10000] using
3500th-order Taylor expansion and the 4180-digit multiple precision; 1200 CPUs of the National
Supercomputer TH-1A; used CPU time ~ 221 hours, or 9 days!

v' N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad, M. Shrimali, Finite-time Lyapunov dimension and hidden
attractor of the Rabinovich system, Nonlinear Dynamics, 2018 http://doi.org/10.1007 /s11071-018-4054-z

B. Munmuangsaen, B. Srisuchinwong, A hidden chaotic attractor in the classical Lorenz system, CS&F, 2018,
Hidden transient chaotic set in the Lorenz systems!, hidden attractor in the Lorénz system is an open-question!
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Hidden attractors localization by the continuation method

Step 1 : :711 1072, b =6.7454- 1072 IStep 2 : a = —1.049 - 10*Z b =7.2454-10" “scepg 1= —9.965 10 2 T S 7541072

self-exc. attractor AL w. 1. t. equil. Sy, Si!sclf—cxc. attractor A% w. 1. t. equilibrium So.hldden attractor A, separatrices of Sy — Sy

G. Chen, N.V. Kuznetsov, G.A. Leonov, T.N. Mokaev, Hidden attractors on one path:
Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems, Int. J. of Bif. and Chaos, 27(8), 2017, art. 1750115
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Kalman conjectures, 1957

[1] Kalman R. E., Physical and Mathematical mechanisms of instability in nonlinear automatic control
systems, Transactions of ASME, 79(3), 1957, 553-566

EEEIR

G(s)

Fig.1. Nonlinear control system. G(s) is a linear transfer function,

f(e) is a single-valued, continuous, and differentiable

In 1957 R.E. Kalman wrote [1]: “ If f(e) in Fig.1 is replaced by constants K
corresponding to all possible values of f/(e), and it is found that the closed-loop
system is stable for all such K, then it is intuitively clear that the system must be
monostable;i.e., all transient solutions will converge to a unique, stable critical point.”

Engineering intuition: the statement is true for models in R1:2:3!

G.A. Leonov, N.V. Kuznetsov, Algorithms for Searching for Hidden Oscillations in the Aizerman
and Kalman Problems, Doklady Mathematics, 84(1), 2011, 475-481

In 2013 R.E. Kalman wrote: "/ was far too young and lacking technical
mathematical knowledge to go more deeply into the matter.”
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M.Aizerman & R. Kalman problems and harmonic balance

if z=Az+bkc*z, is asympt. stable Vke& (k1, k2) : z(t,zo) — 0 Vzg, then
isx=Ax+by(c), c=c*x,p(0)=0, k1 <p(0)/0 <ke: x(t,x0) =0 Vx¢?

1949 : k1 < p(o)/o < ks 1957 : ki < ¢'(0) < ko

Describing Function Method: the system is monostable (e.g. there are no any
periodic solutions) in the case of Aizerman’s and Kalman's conditions.

In general, the conjectures are not true: Aizerman’s in R? and Kalman's in R*.
Counterexamples: the only equilibrium, which is stable, coexist with a stable
oscillations (hidden attractor) which basin of attraction is often small.

Survey: Leonov G.A. ,Kuznetsov N.V., Hidden attractors in dynamical systems. From hidden oscillations in
Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J.
Bif. and Chaos, 23(1), 2013, art. no. 1330002, doi: 10.1142/50218127413300024
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The history of Kalman's and Aizerman’s conjectures

if z=Az+bkc*z, is asympt. stable V&€ (0, k2) : z(t,20) —0 Vzq, then
isx=Ax+by(c), c=c*x,p(0)=0, x(t,x0) =0 Vxo? (trivial global attractor)
M.Aizerman (1949): 0<p(0)/o<ks < R.Kalman (1957): 0<¢'(0) <ks

Krasovsky N. 1952 counterexamples to Aizerman’s conj. in R? (x(t) —-+oc0); V.Pliss

Fitts R.1966: counterexamples to Kalman's conj. in R*, nonlinearity (o) = ¢*

Barabanov N.1979-1988: some of Fitts counterexamples are false; analytical
‘counterex.” construction in R*, ©(0) close to sign(o) (0<¢'(0))

‘gaps’ were discussed by Glutsyuk, Meisters, Bernat & Llibre

Yakubovich, Barabanov, Leonov (1965,1988,1996) frequency theorem with ¢’ (o) =
Kalman conjecture is true in R?

Bernat J. & Llibre J. 1996: analytical-numerical ‘counterexamples’ construction in R*,
@(0) “close’ to sat(a) (0<¢’(0))

Leonov G., Kuznetsov N. 2011: some of Fitts counterexamples are true;

smooth counterex. in R*: ¢(o) = tanh(c): 0<tanh'(c)<1<ks = 9.9;

effective analytical-numerical counterexamples construction

Carrasco J. etal. 2014: Discrete-time Kalman conjecture is false in R?

Survey: V.O. Bragin, V.l. Vagaitsev, N.V. Kuznetsov, G.A. Leonov (2011) Algorithms for finding hidden
oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits, J. of Computer
and Systems Sciences Int., 50(4), 511-544 (doi:10.1134/5S106423071104006X)
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Hidden attractors in engineering

oblems: systems wi t equilibria

A. Sommerfeld effect (1902): represents the inability of a system to be spun up by a
torque-limited rotor to a desired rotational velocity due to its resonant interaction
with another part of the system. [e.g. engine start on submarine in the water]

Support (cart) is attached to wall by spring. Rotating eccentric mass (unbalanced
rotor) is connected to the cart is actuated by DC motor.

(M+m)i+kiz+ml(fcos—02sin0)+kx=0, JO+ko0+mlicosf=u

O O

Normal operation

60 )= 7
< =
» 40 e Sommerfeld effect
N —

0

i=x=60=0
Kiseleva M.A., Kuznetsov N.V., Leonov G.A., Hidden attractors in electromechanical systems with and
without equilibria, IFAC-PapersOnLine, 49(14), 2016, 51-55

Gennady A. Leonov, Nikolay V. Kuznetsov
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Hidden attractors in engineering problems
2004

Drilling setup in Eindhoven TU: de Bruin et al.

Jué +k0(9 —01)+b(é —él)—FTfu(éu) kmv=0, Jlél k‘e(@ —91) b(9 —él)-l—Tfl(él):
0,1 (1) — angular dlsplacements of the upper & lower discs, T, — friction
Stablc7cqu1hbnum Stable limit cycle @

brake device DC motor

2133 N 005, 0,77, 0,71
S0y N ¥

| gear
| box P

—_—
upper disc

steel string

electronic
equipment |

-

1997 CDC

YF22 Raptor Boeing crash in 1992: Lauvdal et al.

“Since stability in simulations does not imply stability of the
physical control system (an example is the crash of the YF22)

stronger theoretical understanding is required”
Aircraft control system — Kalman conjecture
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Hidden oscillations in 16th Hilbert problem

P 1900: 16th Hilbert problem (second part)

What are the number and mutual disposition of limit cycles for

i = Py(z,y) = a12® + bivy + c1y? + cwxr + Bry + ...
U= Qn(z,y) = asz® + bozy + c2y? + asx + Poy + ...

N.N. Bautin 1949-1952: 3 limit cycles (LCs) [around one focus]

I.G. Petrovskii, E.M. Landis 1955-1959: only 3 LCs

L. Chen & M. Wang, S. Shi 1979-80: 4 LCs [(1,3), 2 focuses]

Y. llyashenko 1995: finiteness of the number of limit cycles

P. Zhang 2001: two focuses = only (1,n) distribution of nested cycles

number of limit cycles H(n): H(2) > 4

What about visualization of limit cycles?

Scientific school “Nonlinear waves-2018”, Nizhny Novgorod 20/47
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16th Hilbert problem: Poincare visualization problem

Poincare visualization problem, 1881: "the problem ... to
construct the curves defined by differential equations...”

16th Hilbert problem (second part) 1900:

number and mutual disposition of limit cycles for
i = Py(z,y) = a12? + bizy + c19® + a1 + By + ...
U= Qun(z,y) = a2z? + bawy + cay® + aaw + Boy + ...

V. Arnold (2005): To estimate the number of LCs of square vector fields
on plane, academician A.N. Kolmogorov had distributed several hundreds
of such fields (with randomly chosen coefficients of quadratic expressions)
among a few hundreds of students of Mech.&Math. Faculty of Moscow
Univ. as a mathematical practice. Each student had to find the number of
LCs of his/her field. The result of this experiment was absolutely

unexpected: not a single field had a LCI...

Visualization problem: nested limit cycles are hidden oscillations

Gennady A. Leonov, Nikolay V. Kuznetsov Scientific school “Nonlinear waves-2018”, Nizhny Novgorod 21/47



Hidden oscillations in 16th Hilbert problem

D.Hilbert (1900): number & mutual disposition of limit cycles
i = Py(z,y) = a12® + bivy + c1y? + a1 + Bry + ...
U= Qn(z,y) = a22? + bawy + coy? + a2x + Poy + ...

In the right subfig there are 3 nested limit cycles around stable zero equilibrium.
Red — unstable limit cycles, green — stable limit cycles and equilibrium:
stable equilibrium coexists with stable limit cycle — a hidden oscillation L.

4 b
(a) I.SXIO (b)
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N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, Visualization of four normal size limit cycles in
two-dimensional polynomial quadratic system, Differential equations and Dynamical systems, 21(1-2), 2013,
29-34 (doi:10.1007/s12591-012-0118-6)
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Hidden attractors and multistability

v' A. Jenkins, Self-oscillation, Physics Reports, 525(2), 2013

v' A.N. Pisarchik, U. Feudel, Control of multistability, Physics Reports, 540(4), 2014

v' D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, A. Prasad, Hidden attractors in
dynamical systems, Physics Reports, 637, 2016

v’ X. Zhang, G. Chen, Constructing an autonomous system with infinitely many chaotic attractors, Chaos,
27(7), 2017 art. num. 071101

v' Brzeski P., Wojewoda J., Kapitaniak T., Kurths J., and Perlikowski P., Sample-based approach can
outperform the classical dynamical analysis - experimental confirmation of the basin stability method,
Scientific Reports, 7, 2017, art. num. 6121

v' Garashchuk 1., Sinelshchikov D., Kudryashov N., Hidden attractors in a model of a bubble contrast agent
oscillating near an elastic wall, EPJ Web of Conferences, 173, 2018, art. num. 06006

v' Kuznetsov A., Kuznetsov S., Mosekilde E., Stankevich N., Co-existing hidden attractors in a
radio-physical oscillator system, J. of Physics A: Mathematical and Theoretical, 48, 2015, art. num. 125101
v' Zhusubaliyev Z., Mosekilde E., Churilov A., Medvedev A., Multistability and hidden attractors in an
impulsive Goodwin oscillator with time delay, Eur. Phys. J. Special Topics, 224(8), 2015, 1519-1539

v_ Burkin I., Hidden attractors of some multistable systems with infinite number of equilibria, Chebyshevskii
Sb., 18(2), 2017, 18-33

v' Wei Z., Moroz I., Sprott J., Akgul A., Zhang W., Hidden hyperchaos and electronic circuit application in
a 5D self-exciting homopolar disc dynamo, Chaos, 27(3), 2017, art. num. 033101

v Semenov V., Korneev |., Arinushkin P., Strelkova G., Vadivasova T., Anishchenko V., Numerical and
experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria.
Noise-induced effects, European Physical Journal: Special Topics, 224(8), 2015, 1553-1561,

Hidden attractors 2009-till now in: Glukhovsky-Dolzhansky system (convective fluid motion
inside a rotating ellipsoidal cavity), Rabinovich system (interaction between waves in plasma),
Nose-Hoower system (oscillator), Rabinovich-Fabricant system (the Tollmien-Schlichting waves in
hydrodynamic flows), Sprott system, Chua electronic circuits, memristors, rotating electromechani-
cal systems with Sommerfeld effect, phase-locked loops, drilling systems, aircraft control systems...
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Hidden attractors

v' Leonov G.A.,Kuznetsov N.V., Hidden attractors in dynamical systems. From hidden oscillations in
Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. of
Bif. and Chaos, 23(1),2013, art. no. 1330002

v’ Leonov G.A., Kuznetsov N.V., Mokaev T.N., Homoclinic orbits, and self-excited and hidden attractors in a
Lorenz-like system describing convective fluid motion, European Phys. J. Special Topics, 224, 2015, 1421-1458
v' N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L. Chua, Scenario of the birth of hidden attractors in the
Chua circuit, Int. J. of Bif. and Chaos, 27(12), 2017, art. num. 1730038

v' G.Chen, N. Kuznetsov, G. Leonov, T. Mokaev, Hidden attractors on one path: Glukhovsky-Dolzhansky,
Lorenz, and Rabinovich systems, Int. J. of Bif. and Chaos, 27(8), 2017 art. num. 1750115

v M.-F. Danca, N.V. Kuznetsov, Hidden chaotic sets in a Hopfield neural system, Chaos, Solitons, and
Fractals, vol. 103, 2017, 144-150

v" Kuznetsov N.V., Leonov G.A., Yuldashev M.V., Yuldashev R.V., Hidden attractors in dynamical models of
phase-locked loop circuits: limitations of simulation in MATLAB and SPICE, Commun Nonlinear Sci Numer
Simulat, vol. 51, 2017, 39-49

v' M.-F. Danca, N. Kuznetsov, G. Chen, Unusual dynamics and hidden attractors of the
Rabinovich-Fabrikant system, Nonlinear Dynamics, 88(1), 2017, 791-805

v" Kuznetsov N.V., Hidden attractors in fundamental problems and engineering models. A short survey,
Lecture Notes in Electrical Engineering, vol. 371, 2016, 13-25

v P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Control of multistability in hidden
attractors, European Physical Journal Special Topics, 224, 2015, 1485-1491

v' Sharma P.R., Shrimali M.D., Prasad A., Kuznetsov N.V., Leonov G.A., Controlling dynamics of hidden
attractors, Int. J. of Bif. and Chaos, 25, 2015, art. num. 1550061

v' Leonov G.A., Kuznetsov N.V., Kiseleva M.A. et al., Hidden oscillations in mathematical model of drilling
system actuated by induction motor with a wound rotor, Nonlinear Dynamics, 77(1-2), 2014, 277-288

v N.V. Kuznetsov, G.A. Leonov, Hidden attractors in dynamical systems: systems with no equilibria,
multistability and coexisting attractors, IFAC Proceedings Volumes, 47(3), 2014, 5445-5454

v' V.O. Bragin, V.. Vagaitsev, N.V. Kuznetsov, G.A. Leonov, Algorithms for Finding Hidden Oscillations in
Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua’s Circuits, J. of Computer and
Systems Sciences Int., 50(4), 2011, 511-543
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Dimensions of sets

Topological dimension of K (dimy K ) is the smallest integer n such
that each point p € K has a small neighborhood, the boundary of which
has dimension < n (H.Poincare)

Cantor dust C=TTrc

0 1C0

- — ¢

- I 0 173 2/3 11
0 1/9 2/9 1/3 2/37/9 8/9 1

dmr P=0 dimr b =1 dimrS=2 dmr =9
Consider a covering of K by balls with diameter r; < . Then Hausdorff
dimension (dimy K) is number d, such that lim. ,ginf ", r7d £ 0, # o0;
can take any nonnegative value; suits for study of fractal sets.

N-(K) the minimal number of balls of radius ¢ needed to cover a bounded
set K C R”. Consider the numbers d > 0, ¢ > 0, and put
pr(K,d,e) = Ne(K)e?, pr(K,d) —thUqu(K d,e).
inf{d > 0 | /LF(K d) =0}

dimt K < dimyg K < dimp K < Lyapunov dimension

Attractors with noninteger Hausdorff dimension are called strange attractors

Fractal dimension: dimp K =
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Hausdorff-Lebesgue dimension of sets

v Leonov G.A., Hausdorff-Lebesgue dimension of attractors, Int. Journal of Bifurcation and Chaos, 27(10),
2017, art. num. 1750164

Consider all coverings of compact K by disjoint cubes C; with sides 2§; < 2e.
prrn(K,d,e) =inf Y 64, where the infimum is taken over all 2e-coverings of K.
T

wrr(K,d, ) increases with decreasing € = ugp(K,d) = 1in(1) prrn(K,d,e).

e—
Def. The value pp (K, d) is called a Hausdorff-Lebesgue measure of compact K.
We introduce dimygy, K = inf{d | pur (K, d) = 0}.
Def. The value dimyy, K is called a Hausdorff-Lebesgue dimension of compact K.
Consider now all coverings of K by disjoint cubes C; with sides 2¢

Def. pirpar(K,d) = limsup Y e? is called a Hausdorff-Lebesgue fractal measure
e—0 Q
like functional of compact K.

Def. Hausdorff-Lebesgue fractal dimension dimpyr, K = inf{d | urur (K, d) = 0}

d
MH(Kada\/ﬁs) SﬂHL(K’d”E)(”)Q’ d

pn (K, d) < ppn (K, d)(n)? < pepy (K, d)(n) 2,
dimpg K < dimygp, K < dimpyy, K < Lyapunov dimension
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Finite-time Lyapunov dimension (FTLD)

v/ N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad, M. Shrimali, Finite-time Lyapunov dimension and hidden
attractor of the Rabinovich system, Nonlinear Dynamics, 2018 http://doi.org/10.1007 /s11071-018-4054-z
v' Kuznetsov N.V., The Lyapunov dimension and its estimation via the Leonov method, Physics Letters A,
380(25-26), 2016, 2142-2149

(e }i>0,(USR™|-1]). D' (u) singular val: o1(t, u)>..>0(t, u)>0
wa(Dpt(u))) = o1 (t, u) - 04 (t,u)aLdJ_H(t,u)dedJ, de[0,n)
Def. Finite-time local Lyapunov Dimension (i.e.LD of ¢! at ueU):
dimy, (%, u) = sup{d € [0,n] : wa(Dp'(u)) > 1}.

Def. Finite-time Lyapunov Dimension (LD of map ¢!) with respect
to K=¢'(K): dimp(¢", K) = sup,c g dimr, (¢, u)
[Douady—Oesterlé,lQBO: dimpy K<dimy, (¢!, K), VtzO,K—compact] r

finite-time Lyapunov exponents: LE;(t, u) = 1lno; (¢, u)

analog of Kaplan-Yorke formula for the ordered by decreasing set {LE; (¢, u)}7}:

- . LE; (t,u)+--+LE; 4 o) (¢,
dEY(LEi(tv u)}l ) = j(tv u) -+ 1(| ﬁ%j(t,u)Jrl (]t(vu)‘)( K !

§(t, u)=max{m: 7" LE;(t,x) >0}, """ LE; (t,u) <0

dimy, (", K) = sup,e c dimy (", u) = sup,ec d ¥ (LE; (t,u)}Y)
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Lyapunov dimension (via finite-time LD) and its invariance

Lemma. inf;> dimg,(¢", u) = liminf,_, o sup,,¢ jc dimg, (¢*, u).

Def. Lyapunov dimension of dynamical system {¢’};>¢ with respect to K:
dimy, ({¢'} 120, K) = liminfy, | oo sup,,¢ i dimy, (¢, u)
Lemma. dimy,({¢'}i>0, K)=liminf; o sup,cx df Y({LE;(t,u)}7)

Hausdorff dimension is invariant with respect to Lipschitz diffeomorphisms.

Diffeomorphism h: U C R™ — R", smooth change of coordinates w = h(u)
Dynamical system: ({¢"}¢>0, (UCR™ [|])) = ({¢}, }ez0, (W(U) S R™, || - []))

K =¢!'(K) CU — h(K) = ¢}, (2(K)) C h{U) Dy}, (w) = Dh(¢* (1)) D" (u) (Dh()) ™"
Lemma. Lyapunov dimension of dynamical system dimp,({¢’}:>0, K) is invariant
under diffeomorphism: dimy, ({¢*}:>0, K) = dimg, ({¢%, } >0, H(K));

lim sup;_, | o, LE; (D(pfl(h(u))) = limsup;_, o, LE; (D(pt(u)),i =1,2,..,n.

v' Kuznetsov N.V., Alexeeva T.A., Leonov G.A., Invariance of Lyapunov exponents and Lyapunov dimension
for regular and irregular linearizations, Nonlinear Dynamics, 85(1), 2016, 195-201

v' Kuznetsov N.V., The Lyapunov dimension and its estimation via the Leonov method, Physics Letters A,
380(25-26), 2016, 2142-2149
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Lyapunov dimension: analytical estimation

G. Leonov, 1991: On estimations of Hausdorff dimension of attractors,
Vestnik St. Petersburg University: Mathematics, 24(3)

v' Leonov G.A., Boichenko V.A., Lyapunov’s direct method in the estimation of the Hausdorff dimension of
attractors, Acta Applicandae Mathematicae, 26(1), 1992 1-60.

v' Kuznetsov N.V., The Lyapunov dimension and its estimation via the Leonov method, Physics Letters A,
380(25-26), 2016, 2142-2149

Dh(u)=eV®G+9)""G: V. 7 CR™ — R! smooth, nonsingular matrix S
M(u,8) > > \(u,S) eigenvalues 3(SJ(u(t,u))S™+(SI(u(t,u))S~1)%)

Theorem. (1991) If for integer j € [1,7n] and real s € [0, 1)
3 smooth V : R™ — R and nonsingular matrix .S:

A1 (u, S) AN (1, S)HsAj 41 (u, SV (1) <0, Vu € K then dimy, ({¢'}150, K) < j+s

discrete-time: \y(u,S) >. >\, (u,S) eigenval. of (SJ(u(t,u))S ™Y SIH(u(t,u)S~!

Theorem. (2016) In Ay (u, S)+..+1n X; (u, S) + 51 Aj 1 (u, S)+ (V(0(u) — V (1), |
Vu € K then dimp,({¢'}>0, K) <j+s

If the estimation is valid Vue U = the localization of attractor in not needed!
Thm. If at an equilibrium u., the Jacobian Dp(u.,) has simple real eigenvalues:

{iueg) Hior, Aiteq) > Nit1(ueq), then dimy, ue, = dEY ({Nilueg) }iey)
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Exact Lyapunov dimension formulas for the global attractors

A.B. Babin, M.I. Vishik, 1983 Attractors of evolutionary partial differential
equations and estimates of their dimension. Usp Mat Nauk, 38(4), 133-87

O.A. Ladyzhenskaya, 1987. Finding the minimal global attractors for|
the Navier-Stokes equations and other equations with partial deriva-
Y | tives, Usp Mat Nauk, 42(6), 25-60: dimpy K < oo

8 | global attractor: an invariant, closed, uniformly attracting set in the
. hase space of the dynamical system J

-
Landau-Hopf conjecture 1944, 1948: turbulence developed as a series of bifurca-

tions of quasi-periodic solution with increasing frequency T, T?... (soft excitation)
Lorenz 1963 chaos: truncated Galerkin approx. of aerigh—Benard fluid convection

Ruelle-Takens 1971: Series may stop at 7' & then a strange attractor appear (hard
excitation — i.e. finite dimensional dynamics may explain chaos & turbulence).

\. J

C.R. Doering etal., 1986: Exact Lyapunov Dimension of the universal attractor
for the complex Ginzburg-Landau equation, Phys.Rev.Lett. 59.

A. Eden conjecture, 1989: the maximum of the local LD is achieved on an
equilibrium (e.g. LD the global Lorenz attractor achieved at 0 equilibrium)

Conjecture, 2016: the Lyapunov dimension of (local) self-excited attractor is less
than the Lyapunov dimension of one of the unstable equilibria, the unstable
manifold of which intersects with the basin of attraction and visualize the attractor.
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Exact Lyapunov dimension of one Chua memristor circuit.

F. Corinto, M. Forti, Memristor circuits: bifurcations without parameters, IEEE Transactions on Circuits

and Systems |: Regular Papers 64 (6) (2017) 1540-1551.

t=a(mo—1)z+ay—amiz®+axy, y=x—y+z, ©=PLy—"z
Linearization © = J(¢'(u))v, J(u) = Df(u),
a(mo—1) —3amiz? o 0

J(u) = 1 -1 1 = J(0) — 3am 21,
0 g
almp—1) a O 1 00
Jo=J(0) = 1 -1 1 , L= 0 0 0 |.
0 8 - 0 0O
Let for any ¢ > 0 and any u € U the ordered sequence A;(u) >---> A\, (u), where

Ai(u) = XN (5(J(w) + J(u)*), i =1,...,n be the eigenvalues of the symmetrized
Jacobian matrix 3 (J(u) + J(u)*). Lemma: A;(0) > Aj(u), j=1,2,3

G. Leonov, N. Kuznetsov, The Lyapunov dimension, convergency and entropy for a dynamical model of
Chua memristor circuit, 2018, https://arxiv.org/pdf/1801.09679.pdf
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Exact Lyapunov dimension of the Lorenz attractor:

complete solution of the Eden problem on the Lorenz system

A. Eden, C. Foias, R. Temam (1991), 2.401 < dimp, K < 2.409

G. Leonov, 1991: On estimations of Hausdorff dimension of attractors, Vestnik
St. Petersburg University: Mathematics, 24(3)
allows to estimate without localization of the attractor in the phase space

Lorenz system: r,o,b > 0 — parameters

T =—ox+ oy,
Y=7rr—Yy— TZ,
z = —bz + xy,

Thm (Leonov, 2002, 2017). If — 2D <1 then
o’+1+\/(a—1)2+47'a'

. e 2(o+b+1) _
dimp, K =3 o /o—Drire 2.401312763583084...,

otherwise any solution of the Lorenz system tends to an equilibrium as t — +oo.
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Lyapunov exponents: finite-time numerical computation

P. Cvitanovi¢ [Georgia Tech] Chaos: Classical and Quantum (http://ChaosBook.org):
"Whatever you call your exponents, please state clearly how are they being computed".

Dt u0) L U(t, o) (t, u0)V* (¢, uo),

[ E(t, u()) = diag{al (t, U(]), cery O',I(f,, ’u())},
[ ) U(t,uo)*U(u ’U,o) =1= V(t,uo)*V(t, ’U,o),

(1, u0) E Q(tuo) Rt wp),

o R(t,uo) is upper-triangular, R[¢,i] > 0,

o Q(tv Uo)*Q(t, ’LLO) =1

To avoid exponential growth of the values: (0,7] = (0, 7] U (7,27]U---U ((k — 1), kT = T].

D(kT,u0) =P (7, uk—1)..2(7, ul):'1>(7', up—1).{ ®(1,u1)QY |RY = .. S Q% Ry.RY

ODE + variational eq. = fundamental matrix:
u(s,uo):f(u(s,ug)), ’LL(O, Uo) =1uo € U?
<T>(.s.u()):J(u(s,uo)) D(s,u0), D(0,uo)=1I.

[Finite-time LEs: LE;(t,u0)=+1no;(t, uo) ]

.. - Q R

SVD approximation | ‘ o 0. 0

20 =@ (kr,u0)" Q4 =(RY)"..(RY)" ¥ Qi R}..RI, SI=(R)*(R)*=| - o3 O
. . J

5 =(QR)" ®(k,u0) Qi =(R1)"..(RY)" E QiLRL.R, | -

()'Z/ = R{[Z,Z]Ri[l,l] j;)o Ui(kTv uo)

[LEi (T,uo0) ~LE!(kT,u0)=31Ino! = L 35 InRJ[i,i], LCE;(k,uo)=~LE(kT,uo) ]
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Lyapunov exponents computation: example

R(,):<1 .q(t).ql(t)) J | LE{,(5) LE] ,(25) | LE{,(100)
/ 0 1 " 0 0 0 0

g(t) == exp(§5) [ 1 | £0.00797875| +£0.04394912] +0.09360078

Exact limit values: 2 | £0.01585661] +0.07379280] +0.09986978

LCE = lm lng(t) = 0.1, 3 | £0.02353772] £0.08902280] +0.09999751

t—+o0 4 | £0.03093577] +£0.09563887] £0.09999995

LCE, =0, 5 | £0.03797757| +£0.09830568] +0.09999999

LE o= lim Llng*(¢) = +0.1, | 10 | +0.06638388] £0.09998593 £0.10000000

#5400 50 | +0.09993286] +£0.09999999] +0.10000000

Finite-time values: 100] £0.09999998| +0.09999999 +0.10000000

1
LCE: (t)= 1 In((9(t) = 5()* +1)2€(0,0.1], LCE2(t)=0, LE; 5(t) = LE1 2 = £0.1

Approximation of LCEs by Benettin et al. (1980) becomes worse with ¢ ™
LCE (t) o,0= LE)(t)=1In1=0, LCE;(t) T 01 F LE)(t)=1m1=0.
— : — +00 :

Relying on ergodicity the notions of LCEs and LEs often do not differ (see, e.g.
Eckmann & Ruelle (1985), Wolf et al. (1985), and Abarbanel et al.(1993)),
but in a general case, the computations of LCEs by {LE/}" ,

and LEs by {LE{}?_, may give non relevant results.
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Lyapunov dimension: ergodicity vs multistability

Can one expect the same LEs for almost all points? Multistability!
({(pt}tzo,(R"J || |)) Dyt (u) singular val: o1t,u)>..>0,t,w)>0, LE;(t,u)= %lnai (t,u)
=LE; for u-almost all u

Kaplan-Yorke, 1979: Lyapunov dimension dXY :j—i—%

j=max{m: Y 7"LE,; >0}, "7 LE; <0; absolute LE,(u) =LE, Vu € R"
Henon map: ¢(z, y) = (1 +y —az?, br)  multistability and coexistence of two

Oseledec, 1968 (ergodicity):t ligl LE;(t,u) =LE;(u)
—+00

parameters a=0.97,b=0.466 self-excited attractor
v .. 0. 12
S )
08 W ‘
y ' 06 : LE (t. ug")
. I ” ~
r o4ry P So /, F3 w0 e
! i - \\ "
0~ o S AN /! ‘ LEs(t, uly")
/ n o
T N
attractors A;, A, d¥Y (uy® € Al) LEy o(t, ug: Ju(t, ug) — oo)

LEq1 (ud)=0.011, d¥Y(ud)~1.015; LE; (u2)~0.014, dXY(u2)~1.018, dXY(O_)=1.569, dXY(0O,)=1.427
0 L 0 0 L 0 L L 4
p, arXiv 1712.01270
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Lyapunov dimension: finite-time and limit values

Can one compute the LEs limit value for a point? me transient behavior!
t=—o(x—y)—ayz,y=re—y—zxz, 2=—bzt+zy,0c =—ar,r=6.485,a=—0.5,b=0.85

LE1 (¢, tinit)
0.5
LE: (2, tinit)

04 0.01
03 ~

0.005
0.2
0.1

| 300000 400000 500000

o ly
V' N. Kuznétsov, G. Lédhov, T. l\‘/fgi?aZV,A. Prasad, M. Shrimali, Finite-time Lyapunov dimension and hidden
attractor of the Rabinovich system, Nonlinear Dynamics, 2018 http://doi.org/10.1007 /s11071-018-4054-z
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Lyapunov dimension: ergodicity vs shadowing

Can one expect the same LEs for all points of attractor? Embedded UPO!

Can one compute the LEs limit values for a given point? Finite-time shadowability!

Réssler system: ©=—y — z; y=x +ay; 2=b—cz+ xz, a=b=0.2, ¢c=5.7.

Pyragas UPO stabilization: @ = f(u) + G [u(t — 7) — u(¢)], 7 — period, G — gain ]

Lyapunov dimension

| T

UPO, 7~5.88, G=0.3, chaotic attractor, G =0,
u(t), t € [0,500] o u(t), t € [0,500]

201

0 100 200 300 400 500 4

up = (—6.954527608751571, —1.957934292931243, 0.015672234932247)

v Leonov G.A., Schumafov M.M., Kuznetsov N.V., Delayed feedback stabilization and the
Huijberts-Michiels-Nijmeijer problem, Differential equations, 52(13), 2016, 1707-1731

v" Kuznetsov N., Leonov G., Shumafov M., A short survey on Pyragas time-delay feedback stabilization and
odd number limitation, IFAC-PapersOnLine, 48(11), 2015, 706-709
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Finite-time Lyapunov dimension numerical approximation

Rabinovich system (interaction b/w waves in plasma): (im0 <t
. . B! = y,2) R |a? +0y* + (a+6) (2 P R s
t=—0o(x —y) —ayz; y=re—y—xz; Z=—bz+xy o

20

Hidden attractor: »=100, a=—9.965-10"3, s

b="7.7454-10"2, o =—ar.

Grid: C, =[—11:5: 11]x[-17:5:19]x [80~5~117]"
dimg K <dimp, K< inf  max dEY({LE;(t,u)}2,) -~
t€[0,100] ueCh B

< max dY({LE;(100,u)}2.,)

@ and

°[ max dK\‘ ({LE;(100,u)}?_;) = max dimy,(100,u) = 2.2063
uech, uECL,’”d
max dit¥ ({LCE;(100,u)}{,) = 2.2105 28

ueCh,,

diY({LE;(100,01)}2,) = dimy, (100, Oy) = 2.1474

Y ({LCE;(100,00)}3 ) =

I
diY ({LCE;(100,09)}2_,) = 1.1213 ] i,
|
[ KY 3\ 1 J
dp Y ({LE; (100, 02)};_,) = dimy,(100, O2) = 1.4987 |
|

1 - > ¢
o 10 20 0 4 50 e 70 s 9% Ao

Ling = 98
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Homoclinic bifurcations, Tricomi problem

N

F. Tricomi, 1933, Integrazione di un'equazione differenziale presen-
tatasi in electrotechnica.

J

Pendulum motion: N
0+ af +sinf =,
(>0, v<1)

«  stable & unstable
7(0) =1,7(1) =0 cycles of 2nd kind

v(a) — homoclinic bifurcation.

ODE: x=f(x,9), x€R", ¢geR™
f(x,q) — smooth vector-function, {x} — phase space, {¢} — space of parameters.

Homoclinic orbit : x(t) . li? x(t) = . lim x(t) =x¢, xo — equilibrium.
—+00 ——00

Smooth path : v(s) € {¢}, s€0,1].
[Tricomi Problem: Is there a point go €(s) : go — point of homoclinic bifurcation?]
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Fishing principle

Let: v x(t,s)" — outgoing separatrix of saddle xo with
a 1D unstable manifold;
v xq(s)" - point of the first crossing of separatrix
x(t, s)" with the closed set Q;
v if no such crossing : assume xq(s)" = 0);

Fishing Principle (Leonov, 2012): Suppose for ~(s) there is
(n—1)-dim. bounded manifold Q2 with a piecewise-smooth
edge 0) possessing properties:

(i) forany x € 2\ 0 and s € [0, 1], the vector f(x,~(s))
is transversal to the manifold Q \ 9Q;

(ii) for any s € [0,1], f(x0,7(s)) =0, the point
xo € 082 is a saddle;

(iii) for s = 0 the inclusion xo(0)* € 2\ 99 is valid;

(iv) for s = 1 the relation xq (1) = 0 is valid;

(v) Vs €[0,1] and y € 99 \ xo there exists neiborhood
U(y,0) = {x|lx -yl <} : xa(s)* & U(y,9).

If (i)—(v) satisfied = 3 s0 € [0,1] : x(¢,50)" is a homoclinic

trajectory of the saddle point x.

x(t,s)T, s € [0, s9)

x(t,s)T, s = sg

Gennady A. Leonov, Nikolay V. Kuznetsov Scientific school “Nonlinear waves-2018”, Nizhny Novgorod 42/47



Homoclinic orbit in the Lorenz system

G.A. Leonov, Estimation of loop-bifurcation parameters for a saddle-point separa-
trix of a Lorenz system, Differential Equations, 24(6), 1988

G.A. Leonov, Bounds for attractors and the existence of homoclinic orbits in the
Lorenz system, Journal of Applied Mathematics and Mechanics, 65(1), 2001

G.A. Leonov, General existence conditions of homoclinic trajectories in dissipative
systems. Phys. Lett. A 376, 2012

J

Lorenz system:

i =—ox+ oy, Thm. For o and b fixed, there exists r € (1,+oo),1
Yy=rr—y—xz, corresponding to the homoclinic trajectory of the
z=—bz+uy, saddle z =y = z = 0, iff 2b+ 1 < 30.
r,o,b > 0 — parameters. J
[ V.N. Belykh (1984), X. Chen (1996), S.P. Hastings, W.C. Troy (1996) ]
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Criteria of homoclinic orbit existence

2012-till now: Lorenz system, Shimizu-Morioka system, Chen system, Lu system,
Tigan system, Glukhovsky-Dolzhansky system, and others

v' Leonov G.A., Kuznetsov N.V., Mokaev T.N., Homoclinic orbits, and self-excited and hidden attractors in
a Lorenz-like system describing convective fluid motion, European Physical Journal Special Topics, 224,
2015, 1421-1458

v' Leonov G.A., Kuznetsov N.V., On differences and similarities in the analysis of Lorenz, Chen and Lu
systems, Applied Mathematics and Computation, 256, 2015, 334-343

v' Jleownos, I A., 3apgava Tpukomu gns gunamudeckoii cuctemnl LLlnmuuy-Mopuoka, Joknagbl Akagemun
Hayk, 447, 2012

v' Leonov, G.A., General existence conditions of homoclinic trajectories in dissipative systems. Lorenz,
Shimizu-Morioka, Lu and Chen systems, Phys. Lett. A, 376, 2012

v Leonov, G.A., Shilnikov chaos in Lorenz-like systems, Int. J. Bifurc. Chaos, 23(3), 2013

v' Leonov, G.A.: The Tricomi problem on the existence of homoclinic orbits in dissipative systems. J. Appl.
Math. Mech., 77(3), 2013

v’ Leonov, G.A., Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dyn., 78(4), 2014
v' Leonov G.A., Existence conditions of homoclinic trajectories in Tigan system, Int. J. Bifurc. Chaos,
25(13), 2015, 1550175

v' Jleowos, I A., Kackag 6ucbypkaumnii B cnctemax JIOPeHLO0BCKOrO TNA: POXKAEHME CTPAHHOrO aTTpakTopa,
6udpypkauusa katactpodbl ronyboro Heba n gessaTu romokanHuyeckux budypkaunii, Joknager Akagemun
Hayk, 464(4), 2015, 391-395

v Leonov, G.A., Necessary and sufficient conditions of the existence of homoclinic trajectories and cascade
of bifurcations in Lorenz-like systems: birth of strange attractor and 9 homoclinic bifurcations, Nonlinear
Dyn., 84(2), 2016, 1055-1062
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Homoclinic Bifurcations in Lorenz-like systems

Lorenz-like system: includes:
% v’ Lorenz system
=, 3 v" Shimizu-Morioka system
v=—-l—zu+z—2° v Chen system
U= —au — frv, v Lu system
«, B, A — real numbers, o > 0. v’ Tigan system

Thm. [Leonov,Mokaev,2017] Consider a smooth path A(s), a(s), 8(s), s € [0, 1).
Let A\(0) =0, hm A(s) = +oo, hmsup a( )< +o00, hmsupﬂ( ) < +o00 and the following

condition holds: a(s)(y/A + A(s 2(B(s) — 2), Vs € [0,1]. Then there exists
so € (0,1) : the Lorenz- I|ke system W|th a(so) B(s0), A(so) has a homoclinic trajectory.
3 - B
Consider path: \(s) = = a(s) =01 — s, . R
B(s) € (0, 2+9), 6 >0, s€[0, 1) (%) 2 Rt L
Corollary. There exists so € (0, 1) such that Z("/ } %
Lorenz-like system with s = so and parameters 18] =
(%) has a homoclinic orbit. o P
Saddle value; v positive, if § < 1; o =
v zero, if 6§ =1; V negative, if § > 1; Y SR T 5
— e ——————————,—,, -
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Thank you for your attention!
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