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Motivation: Collapse and the Kolmogorov-Obukhov theory

According to the Kolmogorov-Obukhov theory (1941)
velocity fluctuations at spatial scales l from the inertial
range obey the power-law 〈|δv|〉 ∝ ε1/3l1/3, where ε is the
mean energy flux from large to small scales. This formula
is easily obtained from the dimensional analysis.

Similarly, fluctuations for the vorticity field ω = ∇× v

diverge at small scales as 〈|δω|〉 ∝ ε1/3l−2/3, while the
time of energy transfer from the energy-contained scale
lE to the viscous ones is finite and estimated as
T ∼ l

2/3
E ε−1/3.

These two relations allow to link the Kolmogorov
spectrum formation with the blowup in the vorticity field
(collapse).
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Motivation: Collapse and the Kolmogorov-Obukhov theory

Kolmogorov’s arguments assume locality of interaction
and isotropy of the turbulence in the inertial interval. This
implies that the dynamics at these scales can be
described by the Euler equations and the emergence of
the Kolmogorov energy spectrum can be expected before
the viscous scales are excited, i.e., in a fully inviscid flow.

This conjecture was verified numerically in our previous
papers (2015, 2016, 2017), where we showed that the
Kolmogorov spectrum is developed through the formation
of pancake-like structures of enhanced vorticity. Such
pancakes can be treated as coherent structures.

At the stage of turbulence onset turbulence is far from
isotropic, its spectrum contains a few number of jets.
Each jet corresponds to its own pancake.Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



Motivation: Collapse and the Kolmogorov-Obukhov theory

We also established numerically the asymptotic
Kolmogorov-type scaling,

ωmax(t) ∝ ℓ(t)−2/3,

between the vorticity maximum on the pancake and the
pancake thickness.

No tendency to finite-time blowup was observed for
generic initial conditions, with nearly exponential growth
of vorticity in time.

In the present paper we develop a new concept of folding
for continuously distributed vortex lines.
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Motivation: Collapse and the Kolmogorov-Obukhov theory

The underlying idea that enables the folding phenomenon
is that the “flow” of continuously distributed vortex lines is
compressible, despite the incompressibility of the fluid:
the vortex lines representation (VLR), E.K.& V. Ruban,
1998. Our new theory based on the VLR explains the
2/3-law as a result of the classical fold catastrophe.

The discussed approach is applicable for a larger class of
“frozen-in-fluid” fields advected by incompressible fluid,
for instance, the magnetic field in MHD or the di-vorticity
field for 2D Euler.

By means of a new adaptive numerical scheme based on
the VLR we observed numerically the compressible
character of continuously distributed vortex lines and
verified the details of the folding phenomenon.Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



Vortex line representation (VLR)

Consider a frozen-in-fluid divergence-free field B, defined
from the following equation:

∂B

∂t
= rot(v ×B), div v = 0.

Examples of such fields are the vorticity ω = ∇× v for the 3D
Euler equations, the magnetic field in (ideal) MHD and the
divorticity field B = ∇× ω for 2D Euler hydrodynamics.
Such a B-field line can only be changed by the velocity
component vn perpendicular to B. Now we introduce a new
type of trajectories given by the normal velocity component as

dx

dt
= vn(x, t), x|t=0 = a.
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Vortex line representation (VLR)

Because of frozenness of the field B a solution x = x(a, t)

describes the motion of field lines. In terms of this mapping,
Eq. for B admits explicit integration

B(x, t) =
Ĵ B0(a)

J
, Ĵ(a, t) =

[
∂xi

∂aj

]
, J = det Ĵ ,

where B0(a) is the initial field at t = 0 (analogous to the
Cauchy invariant) and Ĵ is the Jacobi matrix of the mapping.
From the equations of motion for the vortex lines follows the
following equation for the Jacobian (the Liouville formula):

dJ

dt
= divvn · J.
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Vortex line representation (VLR)

In the general situation, divvn 6= 0. By this reason, the
Jacobian as a measure of the volume changing can take
arbitrary values, in particular, can vanish.
The inverse Jacobian, n = 1/J , has the meaning of density of
B-lines and satisfies the continuity equation

∂n
∂t

+ div(nvn) = 0.

One more useful relation. Consider the maximal value of
Bmax. Then one can easily get

dBmax

dt
= Bmax(τ(∇τ)v)

where τ = B/|B|. From another side divvn = −divvτ that
approximately gives at the maximal point BmaxJ ≈ const.
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Vortex line representation (VLR)

In the case of the 3D hydrodynamics, Eqs. written for the
vorticity B = ω together with the relation ω = ∇× v are called
the vortex line representation (VLR), and form a complete set
of equations equivalent to the Euler equations. However,
these equations are written in mixed Eulerian (x-space) and
Lagrangian (a-space) variables. For numerical study, we now
rewrite all the equations using the Eulerian variables.
Let a = a(x, t) be the inverse mapping. This mapping obeys
the equation

∂a

∂t
+ (vn · ∇)a = 0.
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Vortex line representation (VLR)

Eq. for the vorticity B = ω can be rewritten in the form

ωi(x, t) =
1

2
εijk εαβγ ω0α(a)

∂aβ
∂xj

∂aγ
∂xk

.

Here ω0(a) is the initial vorticity at t = 0 . The two equations
together with the relations

v = rot−1ω = −∆−1 (∇× ω), vn = v −
(v · ω)

ω2
ω

for the velocity and the normal velocity represent complete
VLR system of equations written in the Eulerian coordinates
(x, t).
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Folding of vortex lines

REMARK 1: Wave breaking, as blowup, is well known for
compressible flows resulting in appearance of shocks, which
can be considered as the formation of folds. Breaking in
gasdynamics is possible due to compressible character of the
mapping.
REMARK 2: Breaking/folding of vortex lines is impossible in
2D and for cylindrically symmetric flows without swirl (Majda,
1990) because ω ⊥ v and divvn = 0, and consequently J = 1.
Thus, breaking/folding of vortex lines is 3D phenomenon.
Up to now it has not been known whether this process
happens in a finite or infinite time.
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Folding of vortex lines

In our numerics exponential increasing of the vorticity
maximum and formation around this maximum a structure of
the pancake type with exponential decreasing of its width
were observed, instead of blow-up. Such structures appear
around each vorticity maximum and are shown to have
self-similar behavior. (First numerics by M. Brachet, et. el.
(1992).)
Geometrically breaking results in touching of vortex lines (in a
finite or infinite time).
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Folding of vortex lines

Let us assume that breaking/folding takes place. Consider the
equation J(a, t) = 0 and find its positive roots t = t̃(a) > 0.
Then the collapse (or touching) time will be

t0 = mina t̃(a).

Near the minimal point a = a0 as the expansion of J takes

J

aa0

t 0

3

t

t

t

1

2

3

t 0 > t > t > t1 2

the form:
J(a, t) = ατ(t) + γij∆ai∆aj

- concavity condition
α > 0, τ(t) → 0 as t → t0,
γij is positive definite (non-
degenerate) time independent
matrix,
∆a = a− a0.
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Self-similar asymptotics

REMARK: The assumption about linear dependence of Jmin

on τ(t) is familiar to the Landau assumption in his theory of
the second-order phase transitions.
This expansion results in the self-similar asymptotics for
vorticity:

ω(r, t) =
(ω0(a) · ∇a)r|a0
τ(α + γijηiηj)

, η =
∆a

τ 1/2
.

Now the main problem is
to transform from the auxiliary a-space to the physical r-space.
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Self-similar asymptotics

Consider first the 1D case when

J =
∂x

∂a
= ατ + γa2 → x = ατa+

1

3
γa3.

Thus, a ∼ τ 1/2, x ∼ τ 3/2, i.e. in the physical space
compression happens more rapidly than in the space of
Lagrangian markers !! At distances γa2 ≫ ατ we have the
time-independent asymptotics,

J ∼ x2/3.

Thus, any changes happen at the region γa2 ≤ ατ .
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Self-similar asymptotics

3D case
The Jacobian J = λ1λ2λ3 → 0 means that one eigenvalue,
say, λ1 → 0 and λ2, λ3 → const as t → t0 and a → a0. Hence it
follows that near singular point there are two different self
similarities:
along "soft" (λ1 ) direction x1 ∼ τ 3/2 (like in 1D);
along "hard" (λ2, λ3) directions x2,3 ∼ τ 1/2,
so that

ω =
1

τ
g
( x1

τ 3/2
,
x⊥

τ 1/2

)
.

(compare with Zeldovich)
∼ τ 1/2

∼ τ 3/2

This results in formation

of pancake structure
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Self-similar asymptotics

As τ → 0 when γij∆ai∆aj ≫ ατ the vorticity has a
time-independent, very anisotropic distribution. The main
dependence of ω is connected with x1-direction:

ω ≈
b

x
2/3
1

with b = const and KOLMOGOROV index 2/3!.
This dependence is realized everywhere except regions
between two cubic paraboloids −cx3

⊥ < x1 < cx3
⊥ In this

narrow region vorticity at τ = 0 behaves like

ω ≈
b1

x2
⊥

.

Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



Self-similar asymptotics

REGION x

x

2

1

x ~ x1 2

3

KOLMOGOROV

In Kolmogorov region the vorticity can be estimated as

ω ∼
ǫ1/3

x
2/3
1

where ǫ ∼ ω3
0L

2, L ∼ γ−1/2.
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VLR for exact solution

As it was shown by us (JFM, 813, R1 (1-10) (2017)) 3D Euler
has exact solution which in Cartesian coordinates has the
form

v(x, t) = −ωmax(t) ℓ1(t) f

(
x1

ℓ1(t)

)
n3 +




−β1(t) x1

β2(t) x2

β3(t) x3


 ,

ω(x, t) = ωmax(t)f
′

(
x1

ℓ1(t)

)
n2.

Here ωmax(t) and ℓ1(t) are the vorticity maximum and the
pancake thickness, f(x1) is arbitrary smooth function.
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VLR for exact solution

β1(t), β2(t) and β3(t) are given by

β1 = −ℓ̇1/ℓ1, β2 = ω̇max/ωmax, −β1 + β2 + β3 = 0.

There exists the analog of this solution by Lundgren
(1982) which describes axi-symmetric flow. But nobody
before us has found the 1D (pancake) solution.

This solution has infinite energy in R
3 and allows for an

arbitrary time-dependency of ω(t) and ℓ1(t), in particular,
the one leading to a finite-time blowup.
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VLR for exact solution

It can be extended for the Navier–Stokes equations with
kinematic viscosity ν, if the function f(ξ, t) changes with
time as ft −

ν
ℓ2
1

fξξ = 0.

Comparison of this solution for 3D Euler with the
simulations gives a good agreement at the pancake
region for ωmax(t) ∝ et/Tω and ℓ1(t) ∝ e−t/Tℓ .

The velocity component normal to vorticity:

vn(x, t) = −ωmax(t) ℓ1(t) f

(
x1

ℓ1(t)

)
n3 +




−β1x1

0

β3x3


 .
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VLR for exact solution

For exponential pancake development the VLR mapping
is written as

x1 = a1 e
−β1t, x2 = a2, x3 = a3 e

β3t − f(a1)
sinh(β3t)

β3

,

with the corresponding Jacobi matrix,

Ĵ(a, t) =

[
∂xi

∂aj

]
=




e−β1t 0 0

0 1 0

−f ′(a1)
sinh(β3t)

β3

0 eβ3t


 , J(a, t) = det Ĵ = e−β2t
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VLR for exact solution

Respectively, for vorticity we have

ω(x, t) =
Ĵ ω0(a)

J
,

that coincides with our solution.
Hence the Jacobian is inverse-proportional to the vorticity
J(t) ∝ 1/ωmax(t), and does not depend on spatial
coordinates.
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Numerical experiment

We use two numerical schemes based on direct integration of
the Euler equations for ω and the VLR formulation in the
periodic box r = (x, y, z) ∈ [−π, π]3 using the pseudo-spectral
method with high-order Fourier filtering. During simulations,
the number of nodes is adapted independently along each
coordinate providing an optimal anisotropic rectangular grid.
We tested several large-scale initial conditions in the form of
random truncated (up to second harmonics) Fourier series
considered as a perturbation of the shear flow
ωx = sin z, ωy = cos z, ωz = 0. This paper is based on one
selected simulation with the final grid 486× 1024× 2048.
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Numerical experiment: direct integration

Evolution of local vorticity maximums (logarithmic vertical
scale). Green line shows the global maximum, dashed red
line indicates the slope ∝ et/Tω with Tω = 2.
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Numerical experiment: direct integration

Evolution of characteristic spatial scales ℓ1 (black), ℓ2 (blue)
and ℓ3 (red) for the global vorticity maximum. Dashed red line
indicates the slope ∝ e−t/Tℓ with Tℓ = 1.4.
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Numerical experiments: direct integration

Vorticity local maximumsωmax(t) vs. lengths ℓ1(t) during the
evolution of the pancake structures. Green line shows the
global maximum, red circles mark local maximums at the final
time. Dashed red line indicates the power-law ωmax ∝ ℓ

−2/3
1 .
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Numerical experiments: direct integration

Components of the vorticity vector ω = (ω1, ω2, ω3) as
functions of a1 perpendicular to the pancake, at the final time.
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Numerical experiment: direct integration

Vorticity component ω2/ωmax vs. coordinate a1/ℓ1 at different
times, demonstrating the self-similarity from ℓ1(5) = 0.064 to
ℓ1(6.89) = 0.018.
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Numerical experiment: direct integration

Evolution of pancake (right), dependences of ωmax and ℓ1,2,3

(left).Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



Numerical experiment

By use of the direct integration we found that at the
maximal vorticity point

1

ωmax

dωmax

dt
≈ −divvn.

This means that the main contribution into the vorticity
maximum comes from the denominator,

ω(r, t) =
(ω0(a) · ∇a)r(a, t)

J(a, t)
.

By means of the VLR scheme it was demonstrated
decreasing of the Jacobian. This means that formation of
the pancake structures can be considered as folding
(breaking) of the vorticity lines.Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



Direct integration: compressibility
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Numerical experiment: compressibility
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Decreasing of the Jacobian (VLR scheme)
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Numerical experiment: compressibility

Isosurfaces |ω| = 0.8ωmax (red) and J = 1.25 Jmin (blue) at
t = 7.5 (VLR simulation)
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Numerical experiment: compressibility
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Behavior of γij with time.
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Numerical experiment

Energy spectrum at different times demonstrating the
Kolmogorov power-law.
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Numerical experiment: spectrum

JETS: Isosurface |ω̃(k)| = 0.2 of the normalized vorticity field
in k- space at the final time. Solid lines show maximal
k-vectors for all jets (normalized by 1/ℓ1).
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Conclusion of the Ist part

In this talk, based on both VLR and direct numerical
integration of 3D Euler, we show:

At the stage of turbulence arising the spectrum is very far
from isotropic (in the inertial interval).

The main contribution in the spectrum in 3D is connected
with appearance of coherent structures of the pancake
type which in the turbulent spectrum are responsible for
jets with growing in time anisotropy. (First time such
structures were observed by M. Brachet, et.al. (1992).)

The maximal pancake vorticity and its width ℓ are
connected by means of the Kolmogorov type relation:

ωmax ∼ ℓ−2/3.
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Conclusion of the Ist part

Appearance of the pancake structures is a consequence
of compressibility of the vorticity lines as it follows from
the vortex line representation (K. & Ruban, 1998, K.
2002). These structures develop in time exponentially.

Increasing with time number of such structures leads to
formation of the Kolmogorov energy spectrum observed
numerically in a fully inviscid flow, with no tendency
towards finite-time blowup.

Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



References

1. E.A. Kuznetsov, V.P. Ruban, Hamiltonian dynamics of vortex

lines for systems of the hydrodynamic type, JETP Letters, 67,
1076-1081 (1998); Hamiltonian dynamics of vortex and magnetic

lines in the hydrodynamic type models, Phys. Rev E, 61,
831-841 (2000).

2. E.A. Kuznetsov,Vortex line representation for flows of ideal and

viscous fluids , JETP Letters, 76, 346-350 (2002);
physics/0209047.

3. D.S. Agafontsev, E.A. Kuznetsov and A.A. Mailybaev,
Development of high vorticity structures in incompressible 3D Euler

equations, Physics of Fluids 27, 085102 (2015).

Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



References

4. D.S. Agafontsev, E.A. Kuznetsov and A.A. Mailybaev,
Development of high vorticity structures in incompressible 3D Euler

equations: influence of initial conditions JETP Letters 104,
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2D turbulence: Kraichnan vs Saffman spectra

Following Kolmogorov (1941), each integral in its own
transparency region must provide the corresponding
Kolmogorov spectrum.

For 2D HD turbulence, the energy conservation provides
the Kolmogorov spectrum Ek ∼ ǫ2/3k−5/3 with energy flux
ǫ directed to small k: inverse cascade, Kraichnan (1967).

The enstrophy conservation provides the Kraichnan
spectrum(1967) with the constant enstrophy flux η

directed to large k (direct cascade): Ek ∼ η2/3k−3.

The existence of these two spectra has been confirmed in
many numerical experiments simulating 2D turbulence at
Re ≫ 1 when in the corresponding inertial intervals one
can use the Euler equations, instead of the NS equations.
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2D turbulence: Kraichnan vs Saffman spectra

(1971) Saffman spectrum: Just after the Kraichnan’ paper
(1968), in the first numerical experiments (Lilly, 1971)
there was observed the emergence of sharp vorticity
gradients in the form of quasi-shocks with thicknesses
small compared to their length. Based on these
observations, Saffman proposed another spectrum
Ek ∼ k−4 (the main contribution comes from isotropically
distributed quasi-shocks).

The Saffman’ idea was developed by K., Naulin, Nielsen,
& Rasmussen, 2007. If vorticity ω undergoes jumps with
widths δ ≪ L, the characteristic scale, then the spectrum
generated by jumps should be ∼ k−3. Each jump gives
the jet-like distribution with apex angle θ ∼ (kL)−1. In a
pure isotropic case we arrive at the Saffman spectrum.
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2D turbulence: Kraichnan vs Saffman spectra

Thus, the Kraichnan-type spectrum generated by

quasi-singularities must be anisotropic (symmetry breaking) .
That is evidenced by both analytical arguments and
numerical experiments in the case of a freely
two-dimensional turbulence when anisotropy in
turbulence spectra is due to the presence of jets (K.,
Neilson, Naulin, & Rasmussen, 2007; Kudryavtsev, K., &
Sereshchenko, 2013; K. (2004)). In these papers, it was
revealed physical mechanism of quasi-shocks formation
because of a tendency to breaking.

Note that this process in a finite time is forbidden
according to strong theorems (Wolibner,1933; Yudovich,
1963; Kato,1967).
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Tendency to breaking in 2D turbulence

Formation of vorticity quasi-shocks can be understood if
within the Euler equation

vt + (v∇)v = −∇p,

we obtain first the Helmholtz equation for vorticity ω = ∇×v,

ωt + (v∇)ω = 0,

and then consider the divergence-free vector B = rot ω

(di-vorticity, Kida), where B obeys the equation

∂B

∂t
= rot [v ×B].

This vector field is frozen-in-fluid. It is easily seen also that
this vector is tangent to the isoline ω(x, y) = const.
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Tendency to breaking in 2D turbulence

In terms of the substantial derivative Eq. for di-vorticity can be
rewritten as

dB

dt
= (B · ∇)v≡

1

2
[ωẑ ×B ] + ŜB.

The r.h.s. describes the rotation of the vector B and
stretching of the di-vorticity lines where

Ŝik =
1

2

(
∂vk
∂xi

+
∂vi
∂xk

)

is the stress tensor. The di-vorticity length |B| will locally
increase when

1

2

dB2

dt
= (B · ŜB) > 0.
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Tendency to breaking in 2D turbulence

Now let us introduce new Lagrangian trajectories of the
divorticity line, given by vn, as a solution of the following
ODEs,

dr

dt
= vn(r, t); r|t=0 = a.

Then B is expressed through the solution/ mapping
r = r(a, t) and its Jacobian J (analog of VLR):

B(r, t) =
(B0(a) · ∇a)r(a, t)

J

where the initial B0 has a meaning of the Cauchy invariant.
J is not fixed, i.e., the mapping is compressible, that is a
reason of sharp gradients appearance in 2D Euler (KNNR).
The quantity n = J−1 plays the role of divortex lines density.

nt + divr(nvn) = 0, divrvn 6= 0.
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Numerical approach: decay turbulence

To support the above arguments and reveal the direct
connection between the formation of the sharp vorticity
gradients and the tail of the energy spectrum first we
performed numerical experiments of the evolution of
decaying 2D turbulence.

We solve numerically the vorticity equation with
hyperviscosity

dω

dt
= (−1)n+1µn∇

2nω, µn = 10−20

(
2048

N

)2n

, n = 3

in a double periodic domain whose size is taken to be
unity. The simulations conserve the total energy and
enstrophy with a relative error smaller than 10−9.
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Numerical approach: decay turbulence

We use pseudospectral Fourier method and the 3rd order
Runge–Kutta / Crank–Nicolson scheme. The FFTW
library is used for computing the discrete Fast Fourier
Transform.

The computations have been performed on both the
multiprocessor cluster (with MPI parallelization, up to 128
processors have been used) and the GPU cluster (using
NVIDIA CUDA technology) at the Novosibirsk State
University Computational Center.

Spatial resolution was up to 8192×8192. The time scale
corresponds to inverse maximal value of vorticity, ω−1

0 .
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Numerical experiments for 2D decay turbulence

Initial distribution of ω. Distribution of vorticity at t = 100.

Vortices of both signs N = 20 with the Gaussian profile, a
random radius and the unit maximum ω are randomly spaced
within the domain with the zero total circulation.
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Numerical experiments for 2D decay turbulence

Compensated energy spectrum at different times k3E(k)

k

k3 E
(k

)
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Numerical experiments for 2D decay turbulence

Distribution of |B| at t = 100
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Numerical experiments for 2D decay turbulence

Dependence of B on x at t = 75 (y = 0).
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Numerical experiments for 2D decay turbulence

Growth of maximum of di-vorticity (logarithmic scale, the
straight line corresponds to the exponential growth)
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Numerical experiments for 2D decay turbulence

2D energy spectrum k4ǫ(kx, ky) at t = 100
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Numerical experiments for 2D decay turbulence

Filtered compensated spectra k3Ẽ(k) for different threshold
values B0 (t = 100)
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Numerical experiments for 2D decay turbulence

The velocity structure functions

Sn(R) =
〈[

(v(r′)− v(r)) · r
′−r

r′−r

]n〉
∼ Rζn .

Power law exponents ζn (local) as functions of R.
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Numerical experiments for 2D decay turbulence

Correlation function D(R) =
〈
δu‖(δω)

2
〉
.
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2D turbulence with pumping and viscous-type damping

We consider the two-dimensional Navier-Stokes equation for
an incompressible flow in the vorticity formulation,

∂ω

∂t
+ (u∇)ω = (Γ̂ + γ̂)ω with divu = 0,

where the Fourier transforms of Γ̂

Γk = A
(b2 − k2)(k2 − a2)

k2
at 0 ≤ k ≤ b,

Γk = 0 at k > b.

and γ̂ was taken in the viscous-type form with

γk = 0 at k ≤ kc,

γk = −ν(k − kc)
2 at k > kc.
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2D turbulence with pumping and damping

Time evolution of total energy E and total enstrophy H

(A = 0.004, a = 3, b = 6, ν = 1.5, kc = 0.6kmax)
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2D turbulence with pumping and damping

Energy spectrum E(k) at different instants of time

100 101 102 10310­15

10­13
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10­5

10­3

10­1

In the «steady» state Ek = CKη
2/3k−3 with CK ≃ 1.3.
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2D turbulence with pumping and damping

Vorticity distributions at t = 100, 220
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2D turbulence with pumping and damping

Distribution of |B| at t = 100, 220
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2D turbulence with pumping and damping

Distribution of |B| along line y = 0.5 at t = 100, 220.
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2D turbulence with pumping and damping

2D compensated spectrum k4ǫ(kx, ky) at t = 220
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2D turbulence with pumping and damping

Dependence of S(L)
3 as function of R at different angles.
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2D turbulence with pumping and damping, grid 163842

Distribution of |B| at t = 150, 250, 450,
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2D turbulence with pumping and damping, grid 163842

Spectrum density of the energy ǫ(k), normalized to k−4 at
t = 150, 250, 450

Compressible structures in incompressible hydrodynamics and their role in turbulence onset – p.



2D turbulence with pumping and damping, grid 163842

Dependencies of ǫ(k)k4 before averaging (a) and averaging
value of ¯ǫ(k)k4 in the surrounding ∆k = 100 (b) on k for
angle φ = 45◦ at t = 150.
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2D turbulence with pumping and damping, grid 163842

Time evolution of the enstrophy flux η.
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2D turbulence with pumping and damping, grid 163842

Time evolutions of the total energy E and total enstrophy H.
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2D turbulence with pumping and damping, grid 163842

Probability distribution function of vorticity P at t = 450.
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2D turbulence with pumping and damping, grid 163842

Probability distribution function of di-vorticity P at t = 450.
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Conclusion of the second part

For the 2D freely-decaying isotropic turbulence we
demonstrated the formation of the vorticity quasi-shocks
is responsible for the Kraichnan-type spectrum with the
k−3 dependence at each angle.

We have showed that in the presence of both pumping
and damping in the direct cascade the power-law
dependence on wave number k in the Kraichnan-type
spectrum of turbulence is formed by the vorticity
quasi-shocks and this process is the fastest one. Its
characteristic time is of order of the inverse pumping
growth rate τ ∼ Γ−1

max.
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Conclusion of the second part

In the next much slower stage, the structure of
quasi-shocks lines becomes complicated. The distances
between quasi-shocks lines are reduced, and the
spectrum becomes more isotropic. The isotropization
time is estimated as 10τ .

The probability distribution function of vorticity at these
times has exponential tail at large arguments, which can
be extrapolated as a linear dependence of vorticity in
agreement with the isotropic theory by Falkovich -
Lebedev (2011).

A possible reason of isotropization may be related to the
nonlocality of the Kraichnan spectrum.
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