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Main epochs of the Universe evolution – before

1979
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: two main epochs

? −→ FLRWRD=⇒FLRWMD −→ ?

Geometry

H =
1

2t
=⇒ H =

2

3t

Physics
p = ρ/3 =⇒ p � ρ



Main epochs of the Universe evolution – now
The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ

Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 7.5 0.5



Inflation

The inflationary scenario is based on the two main cornerstone
ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from a ”vacuum” (no-particle)
state.



First conjectures of the former:
1. E. B. Gliner (1965): equation of state of matter approaches
p = −ρ at ρ→∞.
Wrong if taken literally.

2. E. B. Gliner (1970): such equation of state leads to the de
Sitter stage preceding the hot Big Bang.
Much closer to the modern paradigm. However: 1) no
workable model; 2) no ideas of observational tests.



First field-theoretical models:
A. A. Starobinsky (1980); D. Kazanas (1980); K. Sato (1981);
A. H. Guth (1981); A. D. Linde (1982); A. Albrecht and
P. J. Steinhardt (1982); A. D. Linde (1983), etc.

First predictions for observations based on calculations of
quantum-gravitational generation of perturbations during
inflation:
A. A. Starobinsky (1979) - tensor ones in GR, V. F. Mukhanov
and G. V. Chibisov (1981) - scalar ones in f (R) gravity,
S. W. Hawking (1982), A. A. Starobinsky (1982), A. H. Guth
and S.-Y. Pi (1982) - scalar ones in GR, etc.



Main advantages of inflation

1. Aesthetic elegance
Inflation – hypothesis about an almost maximally symmetric
(quasi-de Sitter) stage of the evolution of our Universe in the
past, before the hot Big Bang. If so, preferred initial
conditions for (quantum) inhomogeneities with sufficiently
short wavelengths exist – the adiabatic in-vacuum ones. In
addition, these initial conditions represent an attractor for a
much larger compact open set of initial conditions having a
non-zero measure in the space of all initial conditions.

2. Predictability, proof and/or falsification
Given equations, this gives a possibility to calculate all
subsequent evolution of the Universe up to the present time
and even further to the future. Thus, any concrete inflationary
model can be proved or disproved by observational data.



3. Naturalness of the hypothesis
Remarkable qualitative similarity between primordial and
present dark energy.

4. Relates quantum gravity and quantum cosmology to
astronomical observations
Makes quantum gravity effects observable at the present time
and at very large – cosmological – scales.

5. Produces (non-universal) arrow of time for our Universe
Origin – initial quasi-vacuum fluctuation with a fantastically
large correlation radius.



Present status of inflation
Now we have numbers.
P. A. R. Ade et al., arXiv:1502.01589
The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1 has been established (using
the multipole range ` > 40):

< ζ2(r) >=

∫
Pζ(k)

k
dk , Pζ(k) =

(
2.21+0.07

−0.08

)
10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
ln kBTγ

~H0
≈ 67.2.



From ”proving” inflation to using it as a tool
Present status of inflation: transition from ”proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k)− 1 and
r(k).

Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).

The reconstruction approach – determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity – H , Ḣ
2) for super-high energy particle physics – m2

infl .



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. H ∼
√

PζM̃Pl ∼ 1014GeV

In the simplest inflationary models, H gives the curvature (the
Hubble function) value around ∼ 55 e-folds before the end of
inflation.

II. m ∼ H
√
|1− ns | ∼ 1013GeV

In the simplest models, m gives the inflaton mass after the end
of inflation.

New range of mass-energy scales significantly less than the
GUT scale. However, this mass occurs in curved, not flat,
space-time.



Generation of scalar and tensor perturbations

during inflation

A genuine quantum-gravitational effect: a particular case of
the effect of particle-antiparticle creation by an external
gravitational field. Requires quantization of a space-time
metric. Similar to electron-positron creation by an electric
field. From the diagrammatic point of view: an imaginary part
of a one-loop correction to the propagator of a gravitational
field from all quantum matter fields including the gravitational
field itself, too.

The effect can be understood from the behaviour of a light
scalar field in the de Sitter space-time.



Early papers on particle creation in an external electric field:
Nikishov (ZhETF 1970), Narozhnyi and Nikishov (Yad. Fiz.
1970).
Early papers on particle creation in FRLW cosmology:
Chernikov and Tagirov (1968), Parker (1968), Grib and
Mamaev (1969), Zeldovich (1970).
First calculation of a renormalized average value of the
energy-momentum tensor of a quantum field: Zeldovich and
Starobinsky (1971) (made for a more general case of
anisotropic homogeneous cosmology).
However, it appeared finally that quantum field fluctuations
themselves, i.e. first order quantities, are the most interesting
and observable ones.



De Sitter space-time
Constant curvature space-time.

Rαβγδ = H2
0 (gαγgβδ − gαδgβγ )

4 most popular forms of its space-time metric (only the first
metric covers the whole space-time):

ds2 = dt2
c − H−2

0 cosh2(H0tc) (dχ2
c + sin2 χcdΩ2)

ds2 = dt2 − a2
1e

2H0t (dr 2 + r 2dΩ2), a1 = const

ds2 = dt2
o − H−2

0 sinh2(H0to) (dχ2
o + sinh2 χodΩ2)

ds2 = (1− H2
0R2)dτ 2 − (1− H2

0R2)−1dR2 − R2dΩ2

dΩ2 = dθ2 + sin2 θdφ2



Perturbative anomalous growth of light scalar

fields in the de Sitter space-time

Background - fixed - de Sitter or, more interestingly, quasi-de
Sitter space-time (slow roll inflation).
Occurs for 0 ≤ m2 � H2 where H ≡ ȧ

a
, a(t) is a FRW scale

factor. The simplest and textbook example:
m = 0, H = H0 = const for t ≥ t0 and the initial quantum
state of the scalar field at t = t0 is the adiabatic vacuum for
modes with k/a(t0)� H0 and some infrared finite state
otherwise.

The wave equation:
φ;µ

;µ = 0



Quantization with the adiabatic vacuum initial condition:

φ = (2π)−3/2

∫ [
âk φk(η) e−ikr + â†k φ∗

k e ikr
]
d3k

φk(η) =
H0e

−ikη

√
2k

(
η − i

k

)
, a(η) =

1

H0η
, η0 < η < 0, k = |k|

Then

< φ2 >=
H2

0N

4π2
+ const

Here N = ln a
a(t0)

� 1 is the number of e-folds from the
beginning of inflation and the constant depends on the initial
quantum state (Linde, 1982; Starobinsky, 1982; Vilenkin and
Ford, 1982).
Straightforward generalization to the slow-roll case |Ḣ | � H2.



For 0 < m2 � H2, the Bunch-Davies equilibrium value

< φ2 >=
3H4

0

8π2m2
� H2

0

is reached after a large number of e-folds N � H2
0

m2 .
Purely infrared effect - creation of real field fluctuations;
renormalization is not important and does not affect it.

For the de Sitter inflation (gravitons only) (AS, 1979):

Pg (k) =
16GH2

0

π
; < hikh

ik >=
16GH2

0N

π
.

The assumption of small perturbations breaks down for
N & 1/GH2

0 . Still ongoing discussion on the final outcome of
this effect. My opinion - no screening of the background
cosmological constant, instead - stochastic drift through an
infinite number of locally de Sitter, but globally non-equivalent
vacua.



Reason: the de Sitter space-time is not the generic late-time
asymptote of classical solutions of GR with a cosmological
constant Λ both without and with hydrodynamic matter. The
generic late-time (expanding) asymptote is (Starobinsky,
1983):

ds2 = dt2 − γikdx idxk

γik = e2H0taik + bik + e−H0tcik + ...

where H2
0 = Λ/3 and the matrices aik , bik , cik are functions of

spatial coordinates. aik contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.



Generation of metric perturbations

One spatial Fourier mode ∝ e ikr is considered.

For scales of astronomical and cosmological interest, the effect
of creation of metric perturbations occurs at the primordial de
Sitter (inflationary) stage when k ∼ a(t)H(t) where k ≡ |k|
(the first Hubble radius crossing).

After that, for a very long period when k � aH until the
second Hubble radius crossing (which occurs rather recently at
the radiation or matter dominated stages), there exist one
mode of scalar (adiabatic, density) perturbations and two
modes of tensor perturbations (primordial gravitational waves)
for which metric perturbations are constant (in some gauge)
and independent of (unknown) local microphysics due to the
causality principle.



Classical-to-quantum transition for the leading

modes of perturbations

In the superhorizon regime in the coordinate representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l , m = 1, 2, 3

hlm = 2ζ(r)δlm +
2∑

a=1

g (a)(r) e
(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ζ describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ζ, g).

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



Visualizing small differences in the number of

e-folds

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different is different point of space: Ntot = Ntot(r). Then

ζ(r) = δNtot(r) =

(
∂Ntot

∂φ

)
b

δφ(r)

– δN formalism.
Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot(r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



CMB temperature anisotropy

Tγ = (2.72548± 0.00057)K

∆T (θ, φ) =
∑
`m

a`mY`m(θ, φ)

< a`ma`′m′ >= C`δ``′δmm′

Theory: averaging over realizations.
Observations: averaging over the sky for a fixed `.

For scalar perturbations, generated mainly at the last
scattering surface (the surface or recombination) at
zLSS ≈ 1090 (the Sachs-Wolfe, Silk and Doppler effects), but
also after it (the integrated Sachs-Wolfe effect).
For GW – only the ISW works.



For ` . 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

∆T (θ, φ)

Tγ

= −1

5
ζ(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,

`(` + 1)C`,s =
2π

25
Pζ

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV,

δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!





Inflationary models in GR

Based on a minimally coupled scalar field with a potential. In
the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Reduction to the first order equation

It can be reduced to the first order Hamilton-Jacobi-like
equation for H(φ). From the equation for Ḣ , dH

dφ
= −κ2

2
φ̇.

Insering this into the equation for H2, we get

2

3κ2

(
dH

dφ

)2

= H2 − κ2

3
V (φ)

Time dependence is determined using the relation

t = −κ2

2

∫ (
dH

dφ

)−1

dφ

However, during oscillations of φ, H(φ) acquires non-analytic
behaviour of the type const +O(|φ− φ1|3/2) at the points
where φ̇ = 0, and then the correct matching with another
solution is needed.



Inflationary slow-roll dynamics

The crucial element: slow-roll.

Occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′ dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model which

has ”slow climb” first and ”slow roll” after the bounce.



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

Pζ(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2
k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d ln Pζ(k)

d ln k
=

1

κ2

(
2

V ′′
k

Vk
− 3

(
V ′

k

Vk

)2
)



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d ln Pg (k)

d ln k
= − 1

κ2

(
V ′

k

Vk

)2

The consistency relation:

r(k) ≡ Pg

Pζ

=
16|Ḣk |

H2
k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60).



Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)

√
−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν

µ −
1

2
δν
µR

)
= −

(
T ν

µ (vis) + T ν
µ (DM) + T ν

µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R) Rν

µ−
1

2
F (R)δν

µ+
(
∇µ∇ν − δν

µ∇γ∇γ
)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Transformation to the Einstein frame and back
In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.
From the Jordan (physical) frame to the Einstein one:

gE
µν = f ′g J

µν , κφ =

√
3

2
ln f ′, V (φ) =

f ′R − f

2κ2f ′2

where κ2 = 8πG .
Inverse transformation:

R =

(√
6κ

dV (φ)

dφ
+ 4κ2V (φ)

)
exp

(√
2

3
κφ

)

f (R) =

(√
6κ

dV (φ)

dφ
+ 2κ2V (φ)

)
exp

(
2

√
2

3
κφ

)
V (φ) should be at least C 1.



Background FRW equations in f (R) gravity

ds2 = dt2 − a2(t)
(
dx2 + dy 2 + dz2

)
H ≡ ȧ

a
, R = 6(Ḣ + 2H2)

The trace equation (4th order)

3

a3

d

dt

(
a3 df ′(R)

dt

)
− Rf ′(R) + 2f (R) = 8πG (ρm − 3pm)

The 0-0 equation (3d order)

3H
df ′(R)

dt
− 3(Ḣ + H2)f ′(R) +

f (R)

2
= 8πGρm



Reduction to the first order equation
In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric:

2

3κ2

(
dHE (φ)

dφ

)2

= H2
E −

κ2

3
V (φ)

where

HE ≡
d

dtE
ln aE =

1√
f ′

d

dt

(
ln a +

1

2
ln f ′

)

=
1

2
√

f ′

(
3H +

Ḣ

H
− f

6Hf ′

)



From a solution HE (φ(R)) of this equation, the scale factor
a(t) follows in the parametric form:

ln a = −1

2
ln f ′(R)− 3

4

∫ (
f ′′

f ′

)2

HE (R)

(
dHE (R)

dR

)−1

dR

t = −3

4

∫ (
f ′′

f ′

)2(
dHE (R)

dR

)−1

dR



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

In particular,

f (R) ≈ R2

6m2 ln2(R/m2)

for R � m2 to have the same ns , r as for V = m2φ2/2.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈

2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Comparison with some simple models
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The simplest models producing the observed scalar

slope
I. In the Einstein gravity:

V (φ) =
m2φ2

2

m ≈ 1.3× 10−6

(
55

N

)
MPl ≈ 1.6× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

8

N
≈ 0.15

HdS(N = 55) = 1.0× 1014 GeV

Practically excluded by the latest BICEP2/Keck Array/Planck
data: r < 0.07 at 95% c.f.
(P. A. R. Ade et al., arXiv:1510.09217 ).



II. In the modified f (R) gravity:

f (R) = R +
R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.2× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

HdS(N = 55) = 1.4× 1014 GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.
Note similar predictions for the masses m and M and for
HdS(N = 55).



The Lagrangian density for this model

L =
R

16πG
+

N2

288π2Pζ(k)
R2 =

R

16πG
+ 5× 108 R2

1. The specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ

for which A� 1, A� |B |.
2. Another, completely different way: a non-minimally coupled
scalar field with a large negative coupling ξ (ξconf = 1

6
):

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

In this limit, the Higgs-like scalar tree level potential

V (φ) =
λ(φ2−φ2

0)
2

4
just produces f (R) = 1

16πG

(
R + R2

6M2

)
with

M2 = λ/24πξ2G and φ2 = |ξ|R/λ (plus small corrections
∝ |ξ|−1).



Smooth potential reconstruction from scalar power

spectrum in GR
In the slow-roll approximation:

V 3

V ′2 = CPζ(k(t(φ))), C =
12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d ln V

dN

First derived in H. M. Hodges and G. R. Blumenthal, Phys.
Rev. D 42, 3329 (1990).
An ambiguity in the form of V (φ) because of an integration
constant in the first equation. Information about Pg (k) (even
a negative one) helps to remove this ambiguity.



”Scale-free” reconstruction
Numerical coincidence between 2/N(kH) and 1− ns .

Let us assume that it is not a coincidence but happens for all
1� N . 60:

Pζ = P0N
2

Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√

N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit on r : N0 < 100
for N = 57.

On the other hand, minfl(0) =
√

6π2P0 κ−1 ≈ 1.6× 1013 GeV
and does not depend on N0 and r .



Inflation reconstruction in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

Pζ(N)

ln R = const +

∫
dN

√
−2 d ln A

3 dN

Here, the additional assumptions that Pζ ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



GW from inflation
The typical inflationary prediction that r < 8(1− ns) ≈ 0.3 is
confirmed.

Moreover: no sign of GW in the CMB temperature anisotropy
power spectrum. For 1� ` . 50, the Sachs-Wolfe plateau
occurs for the contribution from GW, too:

`(` + 1)C`,g =
π

36

(
1 +

48π2

385

)
Pg

assuming nt = 1 (A. A. Starobinsky, Sov. Astron. Lett. 11,
133 (1985)). So,

C` = C`,s + C`,g = (1 + 0.775r)C`,s

.
For larger ` > 50, `(` + 1)C`,s grows and the first acoustic
peak forms at ` ≈ 200, while `(` + 1)C`,g decreases quickly.
Thus, the presence of GW should lead to a step-like
enhancement of `(` + 1)C` for ` . 50.
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Small features in the power spectrum
Contrary, a ∼ 10% depression has been discovered for
20 . ` . 40.

The effect of at least the same order: an upward wiggle at
` ≈ 40 (the Archeops feature) and a downward one at ` ≈ 22.

Lesson: irrespective of the search for primordial GW from
inflation, features in the anisotropy spectrum for 20 . ` . 40
confirmed by WMAP and Planck should be taken into account
and studied seriously. Some new physics beyond one
slow-rolling inflaton may show itself through them.

For a more elaborated class of models suggested by previous
studies of sharp features in the inflaton potential caused, e.g.
by a fast phase transition occurred in another field coupled to
the inflaton during inflation, see
D. K. Hazra, A. Shafieloo, G. F. Smoot and A. A. Starobinsky,
JCAP 1408, 048 (2014).



Conclusions

I Inflation is being transformed into a normal physical
theory, based on some natural assumptions confirmed by
observations and used to obtain new theoretical
knowledge from them.

I First quantitative observational evidence for small
quantities of the first order in the slow-roll parameters:
the measurement of ns(k)− 1 and the upper limit on
r(k). The generic inflationary predictions |ns − 1| � 1
and r � 1 are confirmed. Typical consequences from
this: H55 ∼ 1014 GeV, minfl ∼ 1013 GeV.

I The quantitative theoretical prediction of these quantities
is based on gravity (space-time metric) quantization and
requires very large space-time curvature in the past of our
Universe with a characteristic length only five orders of
magnitude larger than the Planck one.



I Using the measured value of ns − 1 and assuming a
scale-free scalar power spectrum leads to the prediction
that the region r > 10−3 is well expected. Under the same
assumptions, r can be even larger and close to its present
observational upper limit in two-parametric inflationary
models having large, but not too large N0 ∼ N . However,
this requires a moderate amount of parameter tuning.

I Regarding CMB temperature anisotropy, small features in
the multipole range 20 . ` . 40 at the accuracy level
∼ 1 µK which mask the GW contribution to CMB
temperature anisotropy have to be investigated and
understood. They may reflect some fine structure of
inflation (i.e. fast phase transitions in other quantum
fields coupled to an inflaton during inflation).

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.
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