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Collapses and Kolmogorov spectrum

(1941) Kolmogorov-Obukhov spectrum, i.e. the energy
distribution of the velocity fluctuations in the inertial
interval (Re ≫ 1), Ek ∼ P 2/3k−5/3 where P is the energy
flux. This spectrum can be obtained from the dimensional
analysis.
Ek has the meaning of the energy density in the phase
space ǫk, multiplied by 4πk2. Thus, according to the
dimensional analysis

ǫk =
ρc2

k3
F

(
P

ρc2kc

)
.

Of course, light speed c can not stand here. Hence we
immediately get the Kolmogorov answer.
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Collapses and Kolmogorov spectrum

The Kolmogorov theory is based on two very important
assumptions:
1. Turbulence in the inertial interval is assumed isotropic
and homogeneous.
2. Nonlinear interaction in this interval is supposed local
and defined by P only.

It is well known that singularities give the power type
behavior of the Fourier amplitudes that provides
appearance of power tails for turbulent spectra.
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Collapses and Kolmogorov spectrum

Using the dimensional analysis one can get that the
energy transfer time T from large scales L to dissipative
ones is finite and defined by L and P : T ∼ L2/3P−1/3.

Distribution of velocity fluctuations
< δv >∼ P 1/3r1/3

Respectively, for fluctuations of vorticity ω = [∇× v] we
have:

δω ∼ P 1/3r−2/3.

Thus, for ω we have singularity at r → 0, besides T is
finite.

Questions: Is it a real singularity? Is it possible to say
that the Kolmogorov spectrum appears as a result of
collapse, i.e. the formation of singularity in a finite time?
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Collapses and Kolmogorov spectrum
In this lecture, based on both the vortex line representation
(VLR) and direct numerical integration of 3D Euler, we show
that:

At the stage of turbulence arising the spectrum is very far
from isotropic (in the inertial interval).

The main contribution in the spectrum in 3D is connected
with appearance of coherent structures of the pancake
type which in the turbulent spectrum are responsible for
jets with growing in time anisotropy. (First time such
structures were observed in numerical experiments by M.
Brachet, et. el. (1992).)

The maximal pancake vorticity and its width ℓ are
connected by means of the Kolmogorov type relation:
ωmax ∼ ℓ−2/3.
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Collapses and Kolmogorov spectrum

Appearance of the pancake structures is a consequence
of folding (breaking) of the vorticity lines which develops
in time exponentially. Possibility of folding (breaking) is
connected with compressibility of vortex lines as it follows
from the vortex line representation (K. & Ruban, 1998, K.
2002).

Increasing with time number of such structures leads to
formation of the Kolmogorov energy spectrum observed
numerically in a fully inviscid flow, with no tendency
towards finite-time blowup.
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Collapse of the vorticity - naive arguments

At Re ≫ 1 in the inertial range one can use the Euler
equation which for ω reads as

dω

dt
= (ω · ∇)v,

d

dt
=

∂

∂t
+ (v · ∇), divv = 0.

At the maximal point ωmax satisfies the equation

dωmax

dt
=

∂vτ
∂xτ

ωmax.

where τ = ω/|ω|. If ∂vτ
∂xτ

= αωmax then we have the ODE,
dωmax/dt = αω2

max, with the blow-up solution:

ωmax ∼ (t0 − t)−1.
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VLR and new Cauchy invariant

It is well known that the Euler equation
∂v
∂t

+ (v∇)v = −∇p, div v = 0,

has infinite (continuous) number of integrals of motion. These
are the so called Cauchy invariants. They can be obtained
from the Kelvin theorem

Γ =
∮
C[t]

(v · dl) = inv

with the movable together with fluid contour C[t]. Passing in
this integral to the Lagrangian variables,

r = r(a, t), dr
dt

= v(r, t), r|t=0 = a

we arrive at

Γ =

∮

C[a]

ẋi ·
∂xi

∂ak
dak , with fixed C[a].
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VLR and new Cauchy invariant

Hence we get the Cauchy invariants

I = rota

(
ẋi
∂xi

∂a

)
≡ ω0(a)

which are constraints in Euler. They characterize the
frozenness of the vorticity into fluid. The latter means that
fluid (Lagrangian) particles can not leave its own vortex line
where they were initially. Thus, the particles have one
independent degree of freedom – motion along vortex line.
But such a motion does not change the vorticity:

∂ω

∂t
= rot [v × ω].

Breaking of vortex lines as a forerunner of the developed Kolmogorov turbulence – p. 10



VLR and new Cauchy invariant

Thus, the Helmholtz equation contains only one velocity
component normal to the vortex line, vn. The tangent velocity
vτ plays a passive role providing incompressibility.
Decomposing,v = vn + vτ , in the Euler incompressible

equations leads to the equation of motion of charged
compressible fluid moving in an electromagnetic field:

∂vn

∂t
+ (vn∇)vn = E+ [vn ×H],

where

E = −∇ϕ−
∂A

∂t
, H = rot A

with ϕ = p+ v2τ/2, A = vτ . Thus, two Maxwell equations are
satisfied with the gauge: divA = −divvn 6= 0.
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VLR and new Cauchy invariant
Now perform transform in a new charged compressible

hydrodynamics to the Lagrangian description:

ṙ = vn(r, t) with r|t=0 = a.

Under this transform the new hydrodynamics become the
Hamilton equations:

Ṗ = −∂h/∂r, ṙ = ∂h/∂P,

P = vn +A ≡ v is the generalized momentum, and the
Hamiltonian h = (P−A)2/2 + ϕ ≡ p+ v2/2 (≡ the Bernoulli
"invariant").
The Kelvin (Liouville) theorem says that Γ =

∮
(P · dR) = inv.

Transform in Γ to new Lagrangian coordinates leads to
a new Cauchy invariant :

I = rota

(
Pi

∂xi

∂a

)
≡ ω0(a).

Breaking of vortex lines as a forerunner of the developed Kolmogorov turbulence – p. 12



VLR and a new Cauchy invariant

Hence, one can see that the only one velocity component
normal to the vortex line, vn, can change ω. To define ω it is
enough to know all trajectories of the equation

ṙ = vn(r, t), r|t=0 = a

or, by another words, mapping r = r(a, t). In terms of this
mapping the Helmholtz Eq. can be integrated:

ω(r, t) =
(ω0(a) · ∇a)r(a, t)

J(a, t)

where J(a, t) = ∂(r)/∂(a) is the Jacobian of the mapping. In
this Eq. ω0(a) is a new Cauchy invariant. Due to the vorticity
frozenness, vn is the velocity of vortex lines.
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VLR and a new Cauchy invariant

These equations together with

ω(r, t) = ∇r × v(r, t) and divr v(r, t) = 0

form the complete system of equations in the vortex line
representation (Kuznetsov, Ruban (1998), Kuznetsov (2002,
2006) ).
In the general case, divrvn 6= 0 and therefore r = r(a, t) is the
compressible mapping: the Jacobian is not fixed and can take
arbitrary values! This means that continuously distributed
vortex lines can be compressed.
The quantity n = J−1 plays the role of vortex line density:

nt + divr(nvn) = 0, divrvn 6= 0.
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Folding of vortex lines

REMARK 1: Blowup, as wave breaking, is well known for
compressible flows resulting in appearance of shocks, which
can be considered as the formation of folds. Breaking in
gasdynamics is possible due to compressible character of the
mapping.
REMARK 2: Breaking/folding of vortex lines is impossible in
2D and for cylindrically symmetric flows without swirl (Majda,
1990) because ω ⊥ v and divvn = 0, and consequently J = 1.
Thus, breaking/folding of vortex lines is 3D phenomenon.
Up to now it has not been known whether this process
happens in a finite or infinite time.
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Folding of vortex lines
In numerics, presented further, one can see, instead of
blow-up, exponential increasing of the vorticity maximum and
formation around this maximum a structure of the pancake
type with exponential decreasing of its width. Such structures
appear around each vorticity maximum. The process of
pancake structure formation is shown to have self-similar
behavior. (First time such structures were observed by M.
Brachet, et. el. (1992).)
Geometrically it results in touching of vortex lines (it does not
matter if this process happens in a finite or infinite time).
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Folding of vortex lines

Let us assume that breaking/folding takes place. Consider the
equation J(a, t) = 0 and find its positive roots t = t̃(a) > 0.
Then the collapse (or touching) time will be

t0 = mina t̃(a).

Near the minimal point a = a0 as the expansion of J takes

J

aa0

t 0

3

t

t

t

1

2

3

t 0 > t > t > t1 2

the form:
J(a, t) = ατ(t) + γij∆ai∆aj

- concavity condition
α > 0, τ(t) → 0 as t → t0,
γij is positive definite (non-
degenerate) time independent
matrix,
∆a = a− a0.
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Self-similar asymptotics

REMARK: The assumption about linear dependence of Jmin

on τ(t) is familiar to the Landau assumption in his theory of
the second-order phase transitions.
This expansion results in the self-similar asymptotics for
vorticity:

ω(r, t) =
(ω0(a) · ∇a)r|a0
τ(α + γijηiηj)

, η =
∆a

τ 1/2
.

Now the main problem is
to transform from the auxiliary a-space to the physical r-space.
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Self-similar asymptotics

Consider first the 1D case when

J =
∂x

∂a
= ατ + γa2 → x = ατa+

1

3
γa3.

Thus, a ∼ τ 1/2, x ∼ τ 3/2, i.e. in the physical space
compression happens more rapidly than in the space of
Lagrangian markers !! At distances γa2 ≫ ατ we have the
time-independent asymptotics,

J ∼ x2/3.

Thus, any changes happen at the region γa2 ≤ ατ .
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Self-similar asymptotics

3D case
The Jacobian J = λ1λ2λ3 → 0 means that one eigenvalue,
say, λ1 → 0 and λ2, λ3 → const as t → t0 and a → a0. Hence it
follows that near singular point there are two different self
similarities:
along "soft" (λ1 ) direction x1 ∼ τ 3/2 (like in 1D);
along "hard" (λ2, λ3) directions x2,3 ∼ τ 1/2,
so that

ω =
1

τ
g
( x1

τ 3/2
,
x⊥

τ 1/2

)
.

(compare with Zeldovich)
∼ τ 1/2

∼ τ 3/2

This results in formation

of pancake structure
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Self-similar asymptotics

As τ → 0 when γij∆ai∆aj ≫ ατ the vorticity has a
time-independent, very anisotropic distribution. The main
dependence of ω is connected with x1-direction:

ω ≈
b

x
2/3
1

with b = const and KOLMOGOROV index 2/3!.
This dependence is realized everywhere except regions
between two cubic paraboloids −cx3

⊥
< x1 < cx3

⊥
In this

narrow region vorticity at τ = 0 behaves like

ω ≈
b1

x2
⊥

.
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Self-similar asymptotics

REGION x

x

2

1

x ~ x1 2

3

KOLMOGOROV

In Kolmogorov region the vorticity can be estimated as

ω ∼
P 1/3

x
2/3
1

where P ∼ ω3
0L

2, L ∼ γ−1/2.
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Self-similar asymptotics

In the maximal point a = a0 vorticity ω evidently grows like

ω(t) ∼ τ−1 ∼ ℓ(t)−2/3

where ℓ(t) is the pancake thickness.
At a = a0 the enumerator in VLR can be written as

Ĵω0 ≈
(
λ2P̂2 + λ3P̂3

)
ω0 ⊥ P̂1ω0

where P̂i is projector corresponding to λi. This means that
the maximal vorticity lies in the plane perpendicular to the soft
direction.
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Numerical experiment

We use two numerical schemes based on direct integration of
the Euler equations for ω and in the VLR formulation in the
periodic box r = (x, y, z) ∈ [−π, π]3 using the pseudo-spectral
method with high-order Fourier filtering. During simulations,
the number of nodes is adapted independently along each
coordinate providing an optimal anisotropic rectangular grid.
We tested several large-scale initial conditions in the form of
random truncated (up to second harmonics) Fourier series
considered as a perturbation of the shear flow
ωx = sin z, ωy = cos z, ωz = 0. This paper is based on one
selected simulation with the final grid 486× 1024× 2048.
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Numerical experiment

Formation of the pancake structures. The maximal
pancake vorticity and its width ℓ are connected by means
of the Kolmogorov type relation: ωmax ∼ ℓ−2/3.

Fitting showed exponential increasing of the maximal
vorticity and respectively exponential decreasing of the
pancake width.

By means of the VLR scheme it was demonstrated
decreasing of the Jacobian. This means that formation of
the pancake structures can be considered as folding
(breaking) of the vorticity lines.

Increasing with time number of such structures leads to
formation of the Kolmogorov energy spectrum observed
numerically in a fully inviscid flow.
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Numerical experiment: direct code, 1st IC

Vorticity iso-surface (0.8 from ωmax), t = 6.89
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Numerical experiment: direct code, 2nd IC

Isosurface of vorticity |ω| = 0.8ωmax in local coordinates
(χ1, χ2, χ3) at the final time t = 7.77.
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Numerical experiment: direct code, 1st IC

Evolution of local vorticity maximums (logarithmic vertical
scale). Green line shows the global maximum, dashed red
line indicates the slope ∝ et/Tω with Tω = 2.
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Numerical experiment, direct code, 1st IC

Evolution of characteristic spatial scales ℓ1 (black), ℓ2 (blue)
and ℓ3 (red) for the global vorticity maximum. Dashed red line
indicates the slope ∝ e−t/Tℓ with Tℓ = 1.4.
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Numerical experiment, direct code, 1st IC

Vorticity local maximumsωmax(t) vs. lengths ℓ1(t) during the
evolution of the pancake structures. Green line shows the
global maximum, red circles mark local maximums at the final
time. Dashed red line indicates the power-law ωmax ∝ ℓ

−2/3
1 .
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Numerical experiment: direct code, 2nd IC

Evolution of the global vorticity maximum (logarithmic vertical
scale). Dashed red line indicates the slope ∝ et/Tω with
Tω = 2.7.
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Numerical experiment: direct code, 2nd IC

Evolution of characteristic spatial scales ℓ1 (black), ℓ2 (blue)
and ℓ3 (red) for the local vorticity maximum, which appeared
at t = 2.36 and became the global maximum at the end of the
direct simulation t = 7.77. Dashed red line indicates the slope
∝ e−t/Tℓ with Tℓ = 1.7.
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Numerical experiment: direct code, 2nd IC

Vorticity maximum ωmax(t) vs. pancake thickness ℓ1(t) during
evolution of the pancake, which appeared at t = 2.36 and
yielded the global vorticity maximum at the end of the direct
simulation. Red circle marks the vorticity maximum at
t = 7.77, dashed red line indicates the power-law scaling
ωmax ∝ ℓ

−2/3
1 .
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Numerical experiment, direct code, 1st IC

Components of the vorticity vector ω = (ω1, ω2, ω3) as
functions of a1 perpendicular to the pancake, at the final time.
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Numerical experiment, direct code, 1st IC

Vorticity component ω2/ωmax vs. coordinate a1/ℓ1 at different
times, demonstrating the self-similarity from ℓ1(5) = 0.064 to
ℓ1(6.89) = 0.018.
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Numerical experiment: VLR code, 2nd IC

Evolution of local Jacobian minimums (logarithmic vertical
scale). Dashed red line indicates the exponential slope
Jmin ∝ e−t/TJ with characteristic time TJ = 2.9.
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Numerical experiment: direct code, 2nd IC

Evolution of logarithmic derivative d/dt [logωmax] (black) and
divergence of velocity component normal to vorticity −div vn

(red), at the point of global vorticity maximum. Dash-dot black
shows the inverse characteristic time 1/Tω, Tω ≈ 2.7, for the
growth of maximal vorticity, ωmax ∝ et/Tω .
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Numerical experiment: VLR code, 2nd IC

Evolution of eigenvalues µj, j = 1, 2, 3, of the Jacobi matrix for
the local Jacobian minimum that appeared at t = 2.16 and
became the global Jacobian minimum at the end of the VLR
simulation t = 7.1.

Breaking of vortex lines as a forerunner of the developed Kolmogorov turbulence – p. 38



Numerical experiment: VLR code, 2nd IC

Evolution of γij = (1/2) ∂2J/∂ai∂aj components for this local
minimum of Jacobian.
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D. Agafontsev. Exact solution of 3D Euler

Exact solution of 3D Euler equations with scalings
ωmax(t) ∝ et/Tω and ℓ1(t) ∝ e−t/Tℓ :

v1 = −a1/Tℓ,

v2 = a2/Tω,

v3 = ωmaxℓ1 f(a1/ℓ1) + [1/Tℓ − 1/Tω]a3,

p = −
a21
2T 2

ℓ

−
a22
2T 2

ω

−
a23
2
[1/Tℓ − 1/Tω]

2

ω1 = ω3 = 0, ω2 = −ωmaxf
′ (a1/ℓ1) .

Here f is an arbitrary function and ratio Tℓ/Tω is also
arbitrary, i.e. here we have a big degeneracy. Comparison of
this solution with the simulations gives a good agreement at
the pancake region.
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Numerical experiment

By means of the VLR scheme it was demonstrated
decreasing of the Jacobian. This means that formation of
the pancake structures can be considered as folding
(breaking) of the vorticity lines.

By use of the direct integration we found that at the
maximal vorticity point

1

ωmax

dωmax

dt
≃ −divvn.

This means that the main contribution into the vorticity
maximum comes from the denominator,

ω(r, t) =
(ω0(a) · ∇a)r(a, t)

J(a, t)
.
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Numerical experiment

JETS: Isosurface |ω̃(k)| = 0.2 of the normalized vorticity field
in k- space at the final time. Solid lines show maximal
k-vectors for all jets (normalized by 1/ℓ1).
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Numerical experiment

Energy spectrum at different times demonstrating the
Kolmogorov power-law.
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2D turbulence

Following Kolmogorov (1941), each integral in its own
transparency region must provide the corresponding
Kolmogorov spectrum.

For 2D HD turbulence, the energy conservation provides
the Kolmogorov spectrum Ek ∼ P 2/3k−5/3 with energy flux
P directed to small k (inverse cascade).

The enstrophy provides Kraichnan spectrum(1967) with
enstrophy flux directed to large k (direct cascade):
Ek ∼ η2/3k−3 where η is the enstrophy flux.
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2D turbulence

(1971) Saffman spectrum, Ek ∼ k−4, appears due to
vorticity (quasi-)discontinuities which were observed in
many numerical experiments (Lilly, 1971; Deem, Zabusky,
1978; McWilliams, 1984; Kida, 1985; Brachet,
Meneguzzi, & Sulem, 1986; Okhitani, 1991).

The Saffman idea was developed by K., Naulin, Nielsen,
and Rasmussen, 2007. If one assumes, that vorticity ω

undergoes jumps with widths δ ≪ L, the characteristic
scale, then it easy to get that the spectrum generated by
such jumps should be ∼ k−3. Each jump gives the jet-like
distribution with angular width θ ∼ (kL)−1. In a pure
isotropic case we arrive at the Saffman spectrum. Thus,
only strong angular dependence can provide the
Kraichnan-type spectrum.
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Tendency to breaking in 2D turbulence

Formation of vorticity quasi-shocks can be understood if
within the Euler equation one introduces the divergence-free
vector B (di-vorticity),

Bx =
∂ω

∂y
, By = −

∂ω

∂x
.

where B obeys the equation

∂B

∂t
= rot [v ×B].

This vector field (the di-vorticity) is frosen-in, changes due to
the velocity component vn, normal to B. It is easily seen also
that this vector is tangent to the line ω(x, y) = const.
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Tendency to breaking in 2D turbulence

In terms of the substantial derivative Eq. for di-vorticity can be
rewritten as

dB

dt
= (B · ∇)v≡

1

2
[ωẑ ×B ] + ŜB.

The r.h.s. describes the rotation of the vector B and
stretching of the di-vorticity lines where

Ŝik =
1

2

(
∂vk
∂xi

+
∂vi
∂xk

)

is the stress tensor. The divorticity length |B| will locally
increase when

1

2

dB2

dt
= (B · ŜB) > 0.
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Tendency to breaking in 2D turbulence

By introducing new trajectories,

dr

dt
= vn(r, t); r|t=0 = a,

B is expressed through the mapping r = r(a, t) and its
Jacobian J (analog of VLR, Kuznetsov & Ruban, 1998,
Kuznetsov, 2002):

B(r, t) =
(B0(a) · ∇a)r(a, t)

J

J is not fixed, i.e., the mapping is compressible, that is a
reason of appearance of sharp gradients in 2D Euler
(Kuznetsov, Naulin, Nielsen, and Rasmussen, 2007).
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Numerical approach

To support the above arguments and reveal the direct
connection between the formation of the sharp vorticity
gradients and the tail of the energy spectrum we have
performed a numerical study of the evolution of decaying
2D turbulence.

We solve numerically the vorticity equation with
hyperviscosity

dω

dt
= (−1)n+1µn∇

2nω, µn = 10−20

(
2048

N

)2n

, n = 3

in a double periodic domain whose size is taken to be
unity.
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Numerical approach

We use pseudospectral Fourier method and the 3rd order
Runge–Kutta / Crank–Nicolson scheme. The FFTW
library is used for computing the discrete Fast Fourier
Transform.

The computations have been performed on both the
multiprocessor cluster (with MPI parallelization, up to 128
processors have been used) and the GPU cluster (using
NVIDIA CUDA technology) at the Novosibirsk State
University Computational Center.

Spatial resolution is up to 8192×8192. The time scale
corresponds to inverse maximal value of vorticity, ω−1

0 .
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Numerical experiments for 2D decay turbulence

Initial distribution of ω; Distribution of vorticity at t = 100.

Vortices of both signs N = 20 with the Gaussian profile, a
random radius and the unit maximum ω are randomly spaced
within the domain with the zero total circulation.
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Numerical experiments for 2D decay turbulence

Compensated energy spectrum at different times k3E(k)
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Numerical experiments for 2D decay turbulence

Distribution of |B| at t = 100
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Numerical experiments for 2D decay turbulence

Dependence of B on x at t = 75.
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Numerical experiments for 2D decay turbulence

Growth of maximum of di-vorticity (logarithmic scale, the
straight line corresponds to the exponential growth)
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Numerical experiments for 2D decay turbulence

2D energy spectrum k4ǫ(kx, ky)
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Numerical experiments for 2D decay turbulence

Filtered compensated spectra k3Ẽ(k) for different threshold
values B0
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Numerical experiments for 2D decay turbulence

The velocity structure functions

Sn(R) =
〈[

(v(r′)− v(r)) · r
′
−r

r′−r

]n〉
∼ Rζn .

Power law exponents ζn (local) as functions of R.
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Numerical experiments for 2D decay turbulence

Correlation function D(R) = 〈δu(δω)2〉.

0 0.02 0.04 0.06 0.08 0.1

0.001

0.002

0.003

0.004

Breaking of vortex lines as a forerunner of the developed Kolmogorov turbulence – p. 59



2D turbulence with pumping and viscous-type damping

We consider the two-dimensional Navier-Stokes equation for
an incompressible flow in the vorticity formulation,

∂ω

∂t
+ (u∇)ω = (Γ̂ + γ̂)ω with divu = 0,

where the Fourier transforms of Γ̂

Γk = A
(k2 − b2)(k2 − a2)

k2
at 0 ≤ k ≤ b,

Γk = 0 at k > b,

b > a, A < 0 and γ̂ was taken in the viscous-type form with

γk = 0 at k ≤ kc,

γk = −ν(k − kc)
2 at k > kc.
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2D turbulence with pumping and damping

Time evolution of total energy E and total enstrophy H
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2D turbulence with pumping and damping

Energy spectrum E(k) at different instants of time
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2D turbulence with pumping and damping

Vorticity distributions at t = 100, 220
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2D turbulence with pumping and damping

Distribution of |B| at t = 100, 220
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2D turbulence with pumping and damping

Distribution of |B| along line y = 0.5 at t = 100, 220.
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2D turbulence with pumping and damping

2D compensated spectrum k4ǫ(kx, ky) at t = 220
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2D turbulence with pumping and damping

Dependence of S(L)
3 as function of R at different angles.
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2D turbulence with pumping and damping

At each angle S
(L)
3 (R) is close to the cubic parabola, i.e.

∝ R3, with a linear dependence relative η: S(L)
3 (R) ≈ C3ηR

3.
However, the average over angles of the third-order velocity
structure function gives a significant difference with the
constant C3,isotr = 1/8 for the isotropic turbulence. It should
be noted that the angular averaging constant C3 undergoes
temporal fluctuations: its maximal value sometimes reaches
5 (for this «steady» state!). Average over time within
window 210 ≥ t ≤ 465 with characteristic period ≃ 17 gives
better correspondence: C̄3 ≃ 2.4C3,isotr.
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Conclusion of the 2nd part

Numerical simulations of the 2D freely-decaying isotropic
turbulence have been performed using a pseudospectral
Fourier method with the resolution up to 8192×8192.

Formation of sharp vorticity gradients, which we call the
vorticity quasi-shocks, has been observed.

A Kraichnan-type direct enstrophy cascade with the
fall-off k−3-spectrum has been found.

By means of the spatial filtering we have verified that this
spectrum is appeared due to the formation of the vorticity
quasi-shocks.
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Conclusion of the 2nd part

The strong angular dependence of the spectrum
appearing due to a set of jets with a weak and/or strong
overlapping has been observed.

The structure function of third order shows a good
correspondence to the Kraichnan direct cascade picture
with the constant enstrophy flux. Powers ζn for higher
structure functions grow weaker the linear dependence
relative to n, demonstrating the intermittency
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