

Линейные и нелинейные модели бароклинных волн в атмосфере

А.В. Елисеев

Институт физики атмосферы им. А.М. Обухова Российской Академии наук

"Нелинейные волны – 2016"

Содержание

- Введение

 – Линейная модель развития бароклинных возмущений (модель Иди)

- Взаимодействие бароклинных волн с основным потоком

 Роль нелинейного взаимодействия между отдельными бароклинными волнами в циклогенезе

 Модель формирования блокирующих образований в атмосфере как следствия мультистабильности погодных режимов в атмосфере

- Режимы циркуляции
- Выводы

Бароклинная неустойчивость

аномалии завихренности

Методы теоретического анализа бароклинной неустойчивости

<u>1. Метод нормальных мод</u> (модели Чарни, Иди).

Решения ищутся в виде

$$\begin{array}{l} \textbf{q} = \text{Re} \left\{ \begin{array}{l} \textbf{Q} \exp \left[\text{ i } (\ \textbf{k} \ \cdot \textbf{r} - \textbf{c} \ | \textbf{k} | \ \textbf{t} \ \right) \right] \right\} \\ \textbf{k} = (\textbf{k}_{x}, \textbf{k}_{y}, \textbf{k}_{z}) - \text{ волновой вектор,} \\ \textbf{r} = (\textbf{x}, \textbf{y}, \textbf{z}), \\ \textbf{c} - \phi \text{азовая скорость (комплексная: } \textbf{c} = \textbf{c}_{r} + \textbf{i} \ \textbf{c}_{i} \) \\ \textbf{Q}(\textbf{x}, \textbf{y}, \textbf{z}, \textbf{t}) - \text{ амплитуда, медленно меняющаяся в пространстве и времени:} \\ \quad | \ \textbf{Q}^{-1} \ \partial \textbf{Q} \ / \ \partial \textbf{x} \ | \ \ll | \ \textbf{k}_{x} \ |, \ | \ \textbf{Q}^{-1} \ \partial \textbf{Q} \ / \ \partial \textbf{y} \ | \ \ll | \ \textbf{k}_{y} \ |, \ | \ \textbf{Q}^{-1} \ \partial \textbf{Q} \ / \ \partial \textbf{z} \ | \ \ll | \ \textbf{k}_{z} \ |, \\ \quad | \ \textbf{Q}^{-1} \ \partial \textbf{Q} \ / \ \partial \textbf{t} \ | \ \ll | \ \textbf{c} \ |. \end{array}$$

2. Метод начальных возмущений (немодальный анализ)

Линейный анализ: модель Иди (1)

[Charney, 1947: J. Meteorol., 4 (5)]:

VOL. 4, NO. 5

JOURNAL OF METEOROLOGY

OCTOBER 1947

THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT

By J. G. Charney

Линейный анализ: модель Иди (2)

Закон сохранения квазигеострофической потенциальной завихренности q:

$$\frac{D}{Dt}q = 0, \quad q = \nabla^2 \psi + l + \frac{\partial}{\partial p} m^2 p^2 \frac{\partial \psi}{\partial p}.$$
$$\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \mathbf{U} \cdot \mathbf{\nabla}$$

 $I = 2 \Omega \cos \phi$ – параметр Кориолиса,

 $m = R^{-1}$, $R = (g H)^{\frac{1}{2}} / I - радиус деформации Россби,$

$$\psi$$
 – функция тока (u = – $\partial \psi$ / ∂y ; v = $\partial \psi$ / ∂x).

Линейный анализ: модель Иди (3)

Решения ищем в виде суперпозиции нормальных мод вида

 $\Psi' = \hat{\Psi}(p) \exp\{ik(x-ct)\}$

Из условия сохранения энергии если есть решение с фазовой скоростью распространения волн с₁, то должно быть решение с фазовой скоростью с₂ = c₁*. Поэтому для доказательства наличия бароклинной неусточивости достаточно показать, что есть решения с чисто комплексными с.

$$ik(\overline{u}-c)\left(-k^{2}\hat{\psi}+n^{2}\frac{d^{2}\hat{\psi}}{dp^{2}}\right)=0,$$

$$ik(\overline{u}_0-c)\frac{d\widehat{\Psi}}{dp}+ik\Lambda\widehat{\Psi}=0, \quad p=p_0,$$

$$ik(\overline{u}_{\eta}-c)\frac{d\hat{\Psi}}{dp}+ik\Lambda\hat{\Psi}=0, \quad p=p,$$

Линейный анализ: модель Иди (4)

Первое уравнение системы

$$ik(\overline{u}-c)\left(-k^{2}\hat{\psi}+n^{2}\frac{d^{2}\hat{\psi}}{dp^{2}}\right)=0,$$

делим на u-c (при этом исчезает непрерывный спектр волновых решений).

Тогда

$$d^{2}\hat{\psi}/dp^{2}-\lambda^{2}\hat{\psi}=0, \quad \lambda^{2}=k^{2}/n^{2},$$

с общим решением

 $\hat{\Psi} = A \cosh \lambda p + B \sinh \lambda p.$

С учётом граничных условий приходим к уравнению для собственных чисел λ :

$$c^{2} - c(\overline{u}_{0} + \overline{u}_{1}) + \overline{u}_{0}\overline{u}_{1} + (\overline{u}_{1} - \overline{u}_{0})\Lambda\lambda^{-1} \operatorname{coth}\{\lambda(p_{0} - p_{1})\} - \Lambda^{2}\lambda^{-2} = 0.$$

Необходимо проанализировать дискриминант

$$D = \left(\overline{u}_1 - \overline{u}_0\right)^2 \left\{ 1 - 4\alpha^{-2} \left(\alpha \coth \alpha - 1\right) \right\}, \quad \alpha = \lambda \left(p_0 - p_1\right).$$

Линейный анализ: модель Иди (8) $D = (\overline{u}_1 - \overline{u}_0)^2 \{1 - 4\alpha^{-2}(\alpha \coth \alpha - 1)\}, \quad \alpha = \lambda (p_0 - p_1).$

Можно показать, что D меняет знак при $\alpha = \alpha_c$:

$$\alpha_{c}^{2} = \operatorname{coth}(\alpha_{c}^{2}) \qquad \Rightarrow \qquad \alpha_{c}^{2} \approx 2.4.$$

При α < α_с бароклинные возмущения нарастают со временем. Скорость нарастания этих возмущений

$$k \operatorname{Im} c = \frac{k}{\alpha} \left(\overline{u}_{1} - \overline{u}_{0} \right) \left\{ \left(\operatorname{coth} \frac{\alpha}{2} - \frac{\alpha}{2} \right) \left(\frac{\alpha}{2} - \tanh \frac{\alpha}{2} \right) \right\}^{\frac{1}{2}}.$$

максимальна при $\alpha = \alpha_m \approx 1.75$.

Считается, что максимально неустойчивая мода определяет структуру бароклинных возмущений

Линейный анализ: модель Иди (9)

Линейный анализ: модель Иди (10)

 $p \rightarrow \frac{1}{2} (p_0 + p_1)$

Длина волны, соответствующая максимально неустойчивой моде

 $\lambda_{_{m}}=2 \ \pi \ (\ p_{_{0}}-p_{_{1}} \) \ / \ (\ n \ \alpha_{_{m}} \)=2 \ \pi \ (\ p_{_{0}}-p_{_{1}} \) \ / \ \{ \ m \ \alpha_{_{m}} \ [\ \frac{1}{2} \ (\ p_{_{0}}+p_{_{1}} \) \] \ \}.$

Если
$$p_1 = p_0 / 3 \Rightarrow (p_0 - p_1) / [\frac{1}{2}(p_0 + p_1)] = 1,$$

то
 $\lambda_m = 2 \pi / (m \alpha_m) = (2 \pi / \alpha_m) R \approx 3.59 R \approx 4 R.$

Скорость роста этой моды

$$(k \text{ Im c})_{m} \approx 0.306 \text{ m} (\overline{u}_{1} - \overline{u}_{0}) = 0.306 (\overline{u}_{1} - \overline{u}_{0}) / R$$

 $au_{m} = ((k \text{ Im c})_{m})^{-1} \approx 3.27 \text{ R} / (\overline{u}_{1} - \overline{u}_{0}).$
При ($\overline{u}_{1} - \overline{u}_{0}) = 10 \text{ м/c}$

Нелинейное взаимодействие бароклинных волн со средним потоком

Särtryck ur Tellus nr 2, 1955

Available Potential Energy and the Maintenance of the General Circulation

By EDWARD N. LORENZ, Massachusetts Institute of Technology¹, Cambridge, Mass., USA

388 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 22

Nonlinear, Non-Geostrophic Effects in a Baroclinic Atmosphere¹

ROGER TERRY WILLIAMS

414 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 35

The Life Cycles of Some Nonlinear Baroclinic Waves

Adrian J. Simmons and Brian J. Hoskins

Цикл жизни бароклинных вихрей [Simmons, Hoskins, 1978] (волна с зональным волновым числом 6; основной поток – струйное течение с центром на 45°N)

Цикл Лоренца [Li et al., 2007] (1)

энергия – 10²⁰ Дж

преобразования энергии – 10¹⁴ Вт

Теория взаимодействия бароклинных вихрей с основным потоком (1)

VOL. 33, NO. 11 JOURNAL OF THE ATMOSPHERIC SCIENCES NOVEMBER 1976

Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration¹

D. G. ANDREWS AND M. E. MCINTYRE

Переменные представляются в виде Y = Y + Y' зональное среднее отклонение

$$\partial \overline{u} / \partial t - f_0 \overline{v} = -\partial \left(\overline{u'v'} \right) / \partial y + \overline{X}$$

$$\partial \overline{T}/\partial t + N^2 H R^{-1} \overline{w} = -\partial \left(\overline{v'T'}\right)/\partial y + \overline{J}/c_p$$

Остаточная циркуляция:

$$\overline{v}^* = \overline{v} - \rho_0^{-1} R H^{-1} \partial \left(\rho_0 \overline{v' T'} / N^2 \right) / \partial z$$
$$\overline{w}^* = \overline{w} + R H^{-1} \partial \left(\overline{v' T'} / N^2 \right) / \partial y$$

Теория взаимодействия бароклинных вихрей с основным потоком (2)

Тогда:
$$\partial \overline{u} / \partial t - f_0 \overline{v}^* = +\rho_0^{-1} \nabla \cdot \mathbf{F} + \overline{X} \equiv \overline{G}$$
 Вихревое
воздействие
 $\partial \overline{T} / \partial t + N^2 H R^{-1} \overline{w}^* = \overline{J} / c_p$
 $\partial \overline{v}^* / \partial y + \rho_0^{-1} \partial (\rho_0 \overline{w}^*) / \partial z = 0$

Поток Элиассена-Пальма:

$$F_{y} = -\rho_{0}\overline{u'v'}, \qquad F_{z} = \rho_{0}f_{0}R\overline{v'T'} / \left(N^{2}H\right)$$

Немодальный анализ (1)

Рассматривается система с вектором состояния и и эволюционным уравнением

 $d\mathbf{u}(t) / dt = \widetilde{\mathbf{A}}(t) \mathbf{u}(t) \qquad \mathbf{u} \in H.$

Для линеаризованной системы $\widetilde{A}(t)$ – матрица \widetilde{A} : du'(t) / dt = \widetilde{A} u'(t).

Теорема: Если оператор $\widetilde{A}(t)$ нормален на некотором пространстве *H*, то в этом пространстве существует ортонормированный базис { ϕ_j , j=1,2,...} \in *H*, целиком состоящий из собственных векторов $\widetilde{A}(t)$:

 $\widetilde{\mathbf{A}}(t) \ \mathbf{\phi}_{j} = \lambda_{j} \ \mathbf{\phi}_{j}, \qquad j = 1, 2, \dots \qquad \Rightarrow \qquad \mathbf{\phi}_{j}(t) = \mathbf{\phi}_{j}(0) \ \exp(\lambda_{j} t)$

Немодальный анализ (2)

Деление

$$ik(\overline{u}-c)\left(-k^{2}\hat{\psi}+n^{2}\frac{d^{2}\hat{\psi}}{dp^{2}}\right)=0,$$

на u-с исключает непрерывный спектр волновых решений. Решения из этого спектра растут со временем как t^α [Burger, 1966].

Утверждение: Гидротермодинамический оператор (уравнения Навье– Стокса+термодинамическое уравнение+уравнение неразрывности) в трёхмерном евклидовом пространстве в общем случае не является нормальным (полный базис решений возникает при добавлении решений из этого спектра, но этот базис не будет ортогональным)

Существует взаимодействие между модами, влияющее на развитие бароклинных возмущений

∜

Немодальный анализ (3)

VOL. 39, NO. 8

JOURNAL OF THE ATMOSPHERIC SCIENCES

AUGUST 1982

The Initial Growth of Disturbances in a Baroclinic Flow

BRIAN F. FARRELL

Изменение энергии бароклинных возмущений (K⁻¹ dK/dt) для задачи Иди (волны с вертикальным волновым числом 4π; единица времени – 22 ч.)

 A) линейно наиболее неустойчивая волна:
 зональное волновое число k_m ≈ 1.6

B) волна с k = 2.4

Немодальный анализ (4)

В случае, если $\overline{u}(x,y,p,t) = \overline{u}(p)$:

 решение задачи Иди для модальных возмущений

$$\psi(x,z,t) = \psi_0(z) F(t) \exp(i k x)$$

 $\begin{array}{ll} F(t)\, \sim\, exp(\,-\,i\,k\,c\,t\,) & \text{или} \\ F(t)\, \sim\, t^{\alpha}\, exp(\,-\,i\,k\,c\,t\,). \end{array}$

 решение для немодальных возмущений

$$\psi(x,z,t) = \psi_0(z,t) \exp(i k x)$$

Немодальные решения задачи Иди при сдвиге базового потока Λ = const = 3 (м/c) / км Единица времени – 9.3 ч.

Решения задачи Иди при наличии диссипации [Farrell, 1985]

JOURNAL OF THE ATMOSPHERIC SCIENCES

Vol. 42, No. 24

Transient Growth of Damped Baroclinic Waves

BRIAN FARRELL

нет диссипации

2718

Асимметрия функции распределения вероятности погодных аномалий как характеристика роли нелинейных процессов в циклогенезе

$$X' = X - \langle X \rangle$$

асимметрия
$$S = \langle X'^3 \rangle / \sigma^3$$

Влияние асимметрии ФРВ погодных вариаций на вероятность развития аномалий > 2 σ (реанализ JRA-55, 1979-2014 гг., октябрь-март) [Логинов и др., 2016]

ряд Эджворта для ФРВ: $\varphi \approx \varphi_{_G}$ – (S / 6) $\varphi_{_G}$ '''

R = P(|X| > 2 σ) / P_c(|X| > 2 σ)

Вклад третьих моментов погодной изменчивости в прогностические уравнения для вторых моментов [Petoukhov et al., 2008]

Уравнения вида (подобны турбулентным уравнениям Рейнольдса):

$$\partial M / \partial t = m_{M,2} + m_{M,3} + ...,$$

m_{м,2} — вклад вторых моментов, m_{м,3} — вклад третьих моментов.

меридиональный поток явного тепла: $M = F_{\tau} = \overline{v' T'}$

Блокирование в атмосфере: модель, основанная на мультистабильности состояния атмосферы [Charney, DeVore, 1979] (1)

JULY 1979

JULE G. CHARNEY AND JOHN G. DEVORE

1205

Multiple Flow Equilibria in the Atmosphere and Blocking¹

JULE G. CHARNEY²

Massachusetts Institute of Technology, Cambridge 02139

JOHN G. DEVORE³

University of California, Los Angeles 90024 (Manuscript received 22 September 1978, in final form 28 February 1979)

модель взаимодействия топографической волны со средним (зональным) потоком

Блокирование в атмосфере: модель, основанная на мультистабильности состояния атмосферы (2)

Линеаризованное уравнение для топографической волны:

$$\left(\frac{\partial}{\partial t} + \overline{u}\frac{\partial}{\partial x}\right)\zeta'_g + \beta v'_g + r\zeta'_g = -\frac{f_0}{H}\overline{u}\frac{\partial h_T}{\partial x}$$

х – зональная координата, ū – невозмущённый зональный ветер, ζ_g' – возмущение завихренности параметр Кориолиса: f = f

$$v_{_g}$$
' – возмущение скорости $f = f_{_0} + \beta \phi$

h_т – высота топографии

Н – высота однородной атмосферы

r – коэффициент релаксации

Уравнение для вариаций невозмущённого ветра:

$$\frac{\partial \overline{u}}{\partial t} = -D\left(\overline{u}\right) - \kappa\left(\overline{u} - U_e\right)$$

D(ū) – взаимодействие возмущения со средним потоком U_e – равновесный ветер; к – коэффициент радиационной релаксации

Блокирование в атмосфере: модель, основанная на мультистабильности состояния атмосферы (3)

$$D\left(\overline{u}\right) = -\overline{v'_g \zeta'_g} - \left(f_0 / H\right) \overline{v'_g h_T}$$

Если h_т имеет вид

$$h_T(x, y) = \operatorname{Re}\left[h_0 \exp\left(ikx\right)\right] \cos ly$$

то

$$D(\overline{u}) = -\left(\frac{f_0}{H}\right)\overline{v'_g h_T} = \left(\frac{r K^2 f_0^2}{2\overline{u} H^2}\right)\frac{h_0^2 \cos^2 ly}{\left[\left(K^2 - K_s^2\right)^2 + \varepsilon^2\right]}$$

где

$$\varepsilon \equiv r K^2 (k\overline{u})^{-1}$$
$$K^2 \equiv k^2 + l^2$$
$$K_s^2 = \beta/\overline{u}$$

Блокирование в атмосфере: модель, основанная на мультистабильности состояния атмосферы (4)

Блокирование в атмосфере: модель, основанная на мультистабильности состояния атмосферы (5)

Идентификация блокирующих образований как мультистабильных состояний [Horenko et al., 2008] (с использованием марковских цепей) индекс блокирования вероятность скрытого состояния ј=4 0^{∟...} 3700 3750 3800 3850 3900 Days q=4 q=2 q=0 545 m 540 535 40 560 551 5 555 300 560 565 56 570 564 565

5

Режимы циркуляции (1)

letters to nature

Signature of recent climate change in frequencies of natural atmospheric circulation regimes

S. Corti*, F. Molteni*‡ & T. N. Palmer† NATURE | VOL 398 | 29 APRIL 1999 |

Выборочная ФРВ геопотенциала

B: PNA-, AO+

C: PNA-

D: AO-

Режимы циркуляции (2)

Выборочная ФРВ геопотенциала 500 гПа, реанализ NCEP (исключён средний годовой ход)

- А: частота проявления увеличивается (более быстрое потепление над сушей, чем над океанами)
- В: частота проявления увеличивается (переход АО в положительную фазу)
- С: частота проявления уменьшается (PNA в положительной фазе)
- D: частота проявления уменьшается (переход АО в положительную фазу)

Выводы

 - Линейные модели бароклинных волн в целом учитывают физические особенности циклогенеза в земной атмосфере.

- Тем не менее, важные нелиненые особенности этих волн связаны

 Со взаимодействием с фоновым состоянием атмосферы: рост бароклинных волн:
 P_м → P_e → K_e;

диссипация бароклинных волн: $K_{E} \rightarrow K_{M} \rightarrow P_{M}$.

2. Межмодовым взаимодействием между нейтральными модами непрерывного спектра:

важно в период формирования бароклинных возмущений; может приводить к росту возмущений даже в отсутствие линейной неустойчивости;

увеличивает вероятность формирования интенсивных погодных аномалий.

Возможна мультистабильность состояния атмосферы при заданной интенсивности притока энергии:

- 1. Возможное формирование вихрей, юлокирующих основной поток;
- 2. Режимы циркуляции.