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Introduction: QED

Early Quantum Electrodynamics (QED): Dirac, Heisenberg, Jordan,

Pauli, Fermi, Born, Fock, Wigner, ... (1926-1934)

Discovery of the Lamb shift in Hydrogen: Lamb and Retherford (1947)

(E2s − E2p1/2
)exp = 1062(5)MHz

First evaluation of the Lamb shift: Bethe (1947)

(E2s − E2p1/2
)theor ≈ 1040MHz

Modern QED formalism: Dyson, Feynman, Schwinger, Tomonaga

(1946-1950)

Mass and charge renormalization: m0, e0 → m, e.

Perturbation theory in α ≈ 1/137.

Nonlinear Waves School, Nizhnii Novgorod, November 5 - 11, 2024 – p.3/29



Introduction: QED

Feynman diagrams

Lamb shift

Self energy (SE) Vacuum polarization (VP)
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Introduction: tests of QED with atomic systems

Light atoms (αZ ≪ 1, weak fields):

Tests of QED to lowest orders in α and αZ.

Heavy few-electron ions (αZ ∼ 1, strong fields):

Tests of QED in nonperturbative in αZ regime.

Low-energy heavy-ion collisions at Z1 + Z2 > 173 (supercritical fields):

Tests of QED in supercritical regime.
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Binding energies in heavy few-electron ions

QED corrections

Calculations in the external field approximation (M → ∞)

First-order QED corrections

P.J. Mohr, Ann. Phys., 1974 G. Soff and P.J. Mohr, PRA, 1988

N.L. Manakov, A.A Nekipelov,

A.G. Fainshtein, JETP, 1989

Nonlinear Waves School, Nizhnii Novgorod, November 5 - 11, 2024 – p.6/29



Binding energies in heavy few-electron ions

Self-energy correction for 1s:

∆ESE = α
π

(αZ)4

n3 F (αZ)mc2

The αZ-expansion has the form (L = ln[(αZ)−2]):

F (αZ) = LA41 + A40 + (αZ)A50 + (αZ)2
[

L2A62 + LA61 +A60

]

+ . . .
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Binding energies in heavy few-electron ions

Evaluation of the one-loop vacuum-polarization diagram

= + + · · ·

The first term after the renormalization gives the Uehling potential:

UUehl(r) = −αZ 2α

3π

∞
∫

0

dr′ 4πr′ρ(r′)

∞
∫

1

dt (1 +
1

2t2
)

√
t2 − 1

t2

× [exp (−2m|r − r′|t)− exp (−2m(r + r′)t)]

4mrt
.

where |e|Zρ(r) is the density of the nuclear charge distribution.
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Binding energies in heavy few-electron ions

One-electron second-order QED corrections

Evaluation of the two-loop self-energy diagrams:
V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006.
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Binding energies in heavy few-electron ions

Two- and three-electron second-order QED corrections

Latest progress: Evaluations of all these diagrams for quasidegenerate
states in Be-like ions (A.V. Malyshev et al., PRL, 2021).
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1s Lamb shift in H-like uranium, in eV
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Nuclear physicsDirac equation QED

Experiment: 460.2(4.6) eV

(A. Gumberidze, T. Stöhlker, D. Banas et al., PRL, 2005)

Test of QED: ∼ 2%

∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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2p1/2-2s transition energy in Li-like uranium, in eV
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the Breit approx.
Breit approx.

Nuclear physicsQED

α α2
m

M

Experiment: 280.59(10) eV (J. Schweppe et al., PRL, 1991)

280.52(10) eV (C. Brandau et al., PRL, 2003)

280.645(15) eV (P. Beiersdorfer et al., PRL, 2005)

Test of QED: ∼ 0.2%
∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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QED at supercritical fields

Ionization in quantum mechanics

V0(x)

Nh̄ω

Multiphoton ionization

e ~E

V (x) = V0(x) + eEx

x1 x2

Tunneling ionization

The tunneling probability for a static uniform electric field E:

W ∼ exp
{

−2

~

∫ x2

x1

dx
√

2m(V (x)− E)
}

where V (x) = V0(x) + eEx and E is the electron energy.
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QED at supercritical fields

Electron-positron pair creation

+mc2

positive-energy continuum

−mc2

negative-energy continuum

h̄(N1ω1 + . . .+Nnωn)

Multiphoton
pair creation

e ~E

+mc2

positive-energy continuum

−mc2

negative-energy continuum

x1 x2

Schwinger mechanism

The rate of pair production for a static uniform electric field E:

d4ne+e−

d3xdt
∼ c

4π3λC
4 exp

(

−πEc

E

)

where λC = ~/(mc) and Ec = m2c3/(e~) ≈ 1.3× 1016V/cm.
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QED at supercritical Coulomb field

Supercritical Coulomb field

S.S. Gershtein, Ya.B. Zel’dovich, 1969; W. Pieper, W. Greiner, 1969
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The 1s level dives into the negative-energy continuum at Zcrit ≈ 173.
Nonlinear Waves School, Nizhnii Novgorod, November 5 - 11, 2024 – p.15/29



Low-energy heavy-ion collisions

Creation of electron-positron pairs in low-energy heavy-ion collisions,
with Z1 + Z2 > 173
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d

time

Dynamical mechanism: a),b),c). Spontaneous mechanism (vacuum
decay): d). The 1s state dives into the negative-energy continuum for

about 10−21 sec.
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Low-energy heavy-ion collisions

Positron production probability in 5.9 MeV/u collisions of bare nuclei as
a function of distance of closest approach Rmin

(J. Reinhardt, B. Müller, and W. Greiner, Phys. Rev. A, 1981).

Conclusion by Frankfurt’s group (2005):The vacuum decay could only
be observed in collisions with nuclear sticking, in which the nuclei are

bound to each other for some period of time by nuclear forces.
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Low-energy heavy-ion collisions

New methods for calculations of quantum dynamics of
electron-positron field in low-energy heavy-ion collisions at subcritical
and supercritical regimes have been developed:

• I.I. Tupitsyn, Y.S. Kozhedub, V.M. Shabaev et al., Phys. Rev. A 82, 042701

(2010).

• I. I. Tupitsyn, Y. S. Kozhedub, V. M. Shabaev et al., Phys. Rev. A 85, 032712

(2012).

• G. B. Deyneka, I. A. Maltsev, I. I. Tupitsyn et al., Russ. J. of Phys. Chem. B 6,

224 (2012).

• G. B. Deyneka, I. A. Maltsev, I. I. Tupitsyn et al., Eur. Phys. J. D 67, 258 (2013).

• Y.S. Kozhedub, V.M. Shabaev, I.I. Tupitsyn et al., Phys. Rev. A 90, 042709

(2014).

• I.A. Maltsev, V.M. Shabaev, I.I. Tupitsyn et al., NIMB, 408, 97 (2017).

• R.V. Popov, A.I. Bondarev, Y.S. Kozhedub et al., Eur. Phys. J. D 72, 115 (2018).

• I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., Phys. Rev. A 98, 062709 (2018).
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Low-energy heavy-ion collisions

Time-dependent Dirac equation

i
∂

∂t
ψ(r, t) = (α · p+ βme + V (r, t))ψ(r, t)

with

V (r, t) = VA(|r−RA(t)|) + VB(|r−RB(t)|) .
We introduce two sets of the solutions (see book: E.S. Fradkin, D.M. Gitman,

S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum, 1991):

ψ
(+)
i (r, tin) = φini (r) , ψ

(−)
i (r, tout) = φouti (r) ,

where φini (r) and φouti (r) are the eigenfunctions of the Dirac

Hamiltonian at the corresponding time moments. The number of

created positrons in a state “p” is given by

np =
∑

i>F

∣

∣

∣

∫

drψ(−)†
p (r, t)ψ

(+)
i (r, t)

∣

∣

∣

2

.
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Low-energy heavy-ion collisions

Pair creation beyond the monopole approximation

Positron energy spectrum for the U−U head-on collision at energy
Ecm = 740 MeV (I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., PRA, 2018;

R.V. Popov, V.M. Shabaev, I.A. Maltsev et al., PRD, 2023)
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Low-energy heavy-ion collisions

Pair creation beyond the monopole approximation

U-U, Ecm = 740 MeV

Expected number of created pairs as a function of the impact
parameter b

(I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., PRA, 2018;

R.V. Popov, V.M. Shabaev, I.A. Maltsev et al., PRD, 2023)

b (fm) Monopole approximation Two-center approach

0 1.29 × 10−2 1.35 × 10−2

10 7.26 × 10−3 7.78 × 10−3

20 2.75 × 10−3 3.09 × 10−3

30 1.04 × 10−3 1.22 × 10−3

Nonlinear Waves School, Nizhnii Novgorod, November 5 - 11, 2024 – p.21/29



Low-energy heavy-ion collisions
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Pair creation with artificial trajectories for the supercritical U−U and
subcritical Fr−Fr head-on collisions at Ecm = 674.5 and
Ecm = 740 MeV, respectively. The trajectory Rα(t) is defined by

Ṙα(t) = αṘ(t), where R(t) is the classical Rutherford trajectory
(I.A. Maltsev, V.M. Shabaev, I.I. Tupitsyn et al., PRA, 2015).
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How to observe the vacuum decay

(I.A. Maltsev et al., PRL, 2019; R.V. Popov et al., PRD, 2020)
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We consider only the trajectories for which the minimal internuclear

distance is the same: Rmin = 17.5 fm. We introduce η = E/E0 ≥ 1.
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How to observe the vacuum decay
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Total pair-production probability for symmetric (Z = Z1 = Z2) collisions
as a function of the collision energy at Rmin = 17.5 fm.
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How to observe the vacuum decay
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The derivative of the pair-production probability with respect to the

energy dP/dη, where η = E/E0, at the point η = 1 as a function of the

nuclear charge number Z = Z1 = Z2 at Rmin = 17.5 fm.
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How to observe the vacuum decay
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collision energy η = E/E0 at Rmin = 17.5 fm.

Nonlinear Waves School, Nizhnii Novgorod, November 5 - 11, 2024 – p.26/29



How to observe the vacuum decay

Z = 83

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., PRD, 2024.
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How to observe the vacuum decay

Z = 92

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., PRD, 2024.
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Conclusion

The experimental study of the proposed scenarios would either prove
the vacuum decay in the supercritical Coulomb field or lead to
discovery of a new physical phenomenon, which can not be described
within the presently used QED formalism.

The same scenarios can be applied to observe the vacuum decay in
collisions of bare nuclei with neutral atoms.

For details:

I.A. Maltsev, V.M. Shabaev, R.V. Popov et al., Phys. Rev. Lett. 123, 113401 (2019).

R.V. Popov, V.M. Shabaev, D.A. Telnov et al., Phys. Rev. D 102, 076005 (2020).

R.V. Popov, V.M. Shabaev, I.A. Maltsev et al., Phys. Rev. D 107, 116014 (2023).

N.K. Dulaev, D.A. Telnov, V.M. Shabaev et al., Phys. Rev. D 109, 036008 (2024).
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