Волновая турбулентность на поверхности классической и квантовой жидкости

Л.В.Абдурахимов, М.Ю. Бражников, Г.В. Колмаков, А.А. Левченко, А.А. Межов-Деглин, И.А. Ремизов, С.В. Филатов, А.В. Поплевин, П.Г. Селин

ИФТТ РАН

Лаборатория квантовых кристаллов

- 1. Введение
- 2. Свойства жидкого гелия и водорода, воды
- 3. Как и где возбуждать волны
- 4. На что влияют размеры ячеек
- 5. Локальный максимум в турбулентном спектре
- 6. Обратный поток энергии в турбулентном каскаде.
- 7. Вихревое движение. Наша мотивация.
- 8. Что уже известно.
- 9. Метод формирования и наблюдения.
- 10. Завихренность производится!
- 11. Квантовые вихри в сверхтекучем гелии
- 12. Как интересно!
- 13. Заключение

Мотивация

Волны на поверхности жидкости

• Вихри на поверхности воды

Прямой каскад

Обратный каскад

Колмогоровский спектр изотропной турбулентности:

 $E(k) \sim P^{2/3} k^{-5/3}$

A.N. Kolmogorov, 1941

 $E(k) \sim k^{-5/3}$

V.E. Zakharov and R. Krachnan, Медаль Дирака 2003

$$\omega^2 = \mathbf{g}\mathbf{k} + \sigma/\rho \,\mathbf{k}^3$$

Высоковозбужденное состояние системы со многими степенями свободы, в котором имеется направленный в к-пространстве поток энергии, называется турбулентным. В режиме турбулентности система находится вдали от своего термодинамического равновесия и характеризуется существенным нелинейным взаимодействием степеней свободы, а так же диссипацией энергии. Нелинейное взаимодействие приводит к эффективному перераспределению энергии между степенями свободы (модами).

Почему выбрали воду, водород и гелий?

Вода

ЗАВИСИМОСТЬ ПЛОТНОСТИ ВОДЫ ОТ ТЕМПЕРАТУРЫ

Водород

Гелий -4

Свойства жидкого водорода, гелия и воды

	Liquid Hydrogen, T=15 K	Liquid Helium, T=4.2 K	Water, T=300 K
Плотность ρ , g/cm ³	0.076	0.145	1.0
Поверхностное натяжение α, dyn/cm	2.7	0.12	77
Капиллярная длина λ, ст	1.18	0.18	1.74
Кинематическая вязкость v, cm ^{2/} s	0.0026	0.0002	0.01
Диэлектрическая проницаемость, е	1.26	1.047	81

Методы возбуждения и регистрации волн на поверхности жидкости Новые возможности

Турбулентность на поверхности воды

E.Henry, P.Alstrom and M.T.Levinsen, Euro.Phys.Lett, **52**, 27 (2000)

W.Wright, R.Hiller and S.Putterman, J.Acoust.Soc.Am., **92**, 2360 (1992).

FIG. 1 (color online). Experimental setup: (a) fast video recording of the fluorescing water surface, (b) local measurement of the laser beam transmission through diffusing liquid.

Capillary Rogue Waves

M. Shats,^{*} H. Punzmann, and H. Xia Research School of Physics and Engineering. The Australian National University, Camberra ACT 0200, Australia (Received 8 December 2009; published 11 March 2010)

Метод возбуждения

Накачка мениском

Параметрическая накачка

 $g(t) = g_0 (1 + \beta \cos(\omega_p t))$ $\zeta(\mathbf{r}, t) = a e^{i\omega t} J_n(kr) \cos n\theta, \omega = \omega_p/2$

 $\zeta(\mathbf{r},t) = ae^{i\omega t}J_0(kr), \omega = \omega p$

Турбулентность на поверхности ртути

Observation of Gravity-Capillary Wave Turbulence Eric Falcon, Claude Laroche, and Stephan Fauve, PRL 98, 094503 (2007)

1 – видеокамера, 2 – приводы плунжеров, 3 – плунжеры, 4 – ванна, 5 – вода.

Метод измерений

Корреляционная функция в Фурье представление

Узкий луч (*ka*<<*π*, *a* – размер лазерного пятна): I_ω ~ ω^{4/3} Р²_ω

Широкий луч (*ka>>π*): Ι_ω ~ Ρ²ω

 P_ω –Фурье амплитуда

Схема регистрации поверхностных колебаний

Фрагмент экспериментальной записи P(t). Монохроматическая накачка.

Основной вопрос в исследовании волновой турбулентности - нахождение закона распределения энергии системы волн по шкале частот *Е@*

В.Е. Захаров, Н.Н. Филоненко, 1967

$$\boldsymbol{E} = \int \boldsymbol{\omega}_{\kappa} \, \mathbf{n}_{\kappa} \, \mathbf{d} \boldsymbol{\kappa} = \int \boldsymbol{\omega} \mathbf{n}(\boldsymbol{\omega}) \mathbf{d} \boldsymbol{\omega} = \int \boldsymbol{E}_{\boldsymbol{\omega}} \, \mathbf{d} \boldsymbol{\omega}$$

 $n(\omega) = C P^{1/2} \rho^{3/2} \sigma^{-1/4} \omega^{-15/6}$ "occupation numbers" for wave modes of frequency ω .
$$\begin{split} I_{\omega} &= < |\eta_{\omega}|^{2} > \\ \text{pair correlation function} \\ \text{of deviations of the surface } \eta(\mathbf{r}, \mathbf{t}) \\ I_{\omega} &\sim \rho^{-17/6} \sigma^{-7/12} \eta(\omega) \omega^{-1/3} \end{split}$$

$$|_{\omega} = \langle |\eta_{\omega}|^2 \rangle = C P^{1/2} (\sigma/\rho)^{1/6} \omega^{-17/6}$$

Угловая амплитуда α << 1

$$\omega^2 = \mathbf{g}\mathbf{k} + \sigma/\rho \,\mathbf{k}^3$$

На поверхности океана

 $ω^2 = kth(kh) (g + k^2 σ/ρ - 2k P cth(kd)/ρ)$

На поверхности жидкости в экспериментальной ячейке

h – глубина жидкости

d – расстояние до верхнего электрода

Р – давление электрического поля

Спектр волн на поверхности жидкости

Расстояние между резонансами в кпространстве ⊿k ≈ 2π/D

Цилиндрическая геометрия

$$J_1(kD/2)=0$$

$$J_{\alpha}(x) = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\alpha \pi}{2} - \frac{\pi}{4}\right)$$

$$k=\frac{2\pi}{D}\left(n-\frac{3}{4}\right)$$

$$f = \frac{1}{2\pi} \sqrt{\frac{\sigma}{\rho}} \left(\frac{2\pi}{D}\right)^{3/2} \left(n - \frac{3}{4}\right)^{3/2}$$

к - скаляр

Прямоугольная геометрия. Двумерное пространство.

k – вектор!

Плотность резонансов много выше, чем в цилиндрической ячейке.

Законы сохранения энергии и импульса

 $k = k_1 + k_2$

Трёхволновое взаимодействие

 $\omega = \omega_1 + \omega_2$

Система для трехволнового взаимодействия не имеет решений в случае капиллярных волн в ограниченной геометрии. Взаимодействующих мод Фурье в кинетическом уравнении для волн в конечной области нет. Однако ситуация меняется, если учесть нелинейную дисперсионную поправку, обусловленную конечной амплитудой возбуждаемой волны и вязкостью жидкости. Законы сохранения преобразуются в квазизаконы сохранения.

Карташова Захаров Назаренко $\omega_1 + \omega_2 = \omega_3 + \delta$ $\kappa_1 + \kappa_2 = \kappa_3$

Уширение резонансного пики : $\delta \omega = \Delta \omega_{nl} + \Delta \omega_{v}$,

Турбулентный каскад на поверхности жидкого водорода. Широкополосная накачка.

Эволюция	турбулентного			
каскада с	изменением			
ширины накачки				
a) 80-140 Hz,				
b) 90-130 Hz,				
c) 105-115 Hz.				

a)

Турбулентный каскад, возбуждаемый узкополосной силой.

Stationary distribution *n*_k for capillary waves calculated for the case of spectrally sharp driving *(G.E. Falkovich, A.B. Shafarenko, 1988)*

Дискретный турбулентный каскад энергии

Турбулентный каскад на поверхности жидкого водорода. Монохроматическое возбуждение на частоте 135 Гц, Амплитуда первой гармоники - 0,02 мм.

Квазиадиабатический распад

Прямой турбулентный каскад на поверхности сверхтекучего гелия.

Сверхтекучий гелий. T=1.95К Локальный максимум

Турбулентное распределение при монохроматической накачке на частоте 90 Гц. Температура 1.7К. Прямоугольная ячейка, сверхтекучий гелий.

L V Abdurakhimov, M Yu Brazhnikov, G V Kolmakov and A A Levchenko, JETP Letter, 2012

Значительный прорыв в классификации существования решений этой системы для различных типов дисперсионных соотношений w(k) был получен Карташовой. Было показано, в частности, что система (18) и (19) не имеет решений в случае дисперсионного соотношения капиллярных волн, что означает отсутствие взаимодействующих мод Фурье в кинетическом уравнении для волн в конечной области.

Уширение резонансных пиков

Ширина резонансного пика определяется вязким и нелинейным уширением,

 $\delta \omega = \delta \omega_{v} + \delta \omega_{nl}$

 $\delta \omega_v = 4vk^2 = 4v(\rho/\sigma)^{2/3} \omega^{4/3},$ $\delta \omega_{nl} \sim f(A) \cdot \omega^{-1/6} \sim V^{2*} n(\omega)$ f(A) - функция амплитудынакачки A.

Формирование дискретной турбулентности

 $\frac{4\nu k_{\omega}^{2} + \epsilon(A) \cdot \omega^{-1/6}}{(3\pi/D)(\sigma/\rho)^{1/3} \omega^{1/3}} < 1$

 $rac{\delta\omega}{\Delta\omega} < 1$

Формирование каскада после включения накачки на частоте 58.4 Гц через 1 и 5 секунд. Цилиндрическая ячейка d = 60 mm.

t = 30 s

Турбулентный каскад через 30 секунд после включения накачки.

Скорость движения энергии в к- пространстве k/t ~ 5*10² (1/cm/sec)

Генерация субгармоники на fp/2 сопровождается значительной потерей энергии волны на основной частоте (~90%). В этом же временном окне наблюдается накопление энергии в области высоких частот. В отличии от He-II спектр собственных мод колебаний на поверхности H² можно считать квазинепрерывным выше 1 кГц.

Уменьшение потока энергии из-за низкой возбуждений плотности В диссипативной области ведет К вблизи энергии края накоплению инерциального интервала.

G. E. Falkovich, I. V. Ryzhenkova JETP, 98, 1931 (1990)

 $dn_k / dt = Stn\{n_k\} - \gamma_k n_k$

• Можно ли наблюдать обратный поток энергии в лабораторных условиях?

Формирование обратного каскада

A. O. Korotkevich, *Influence of the condensate and inverse cascade on the direct cascade in wave turbulence*, Math. Comput. Simul., doi:10.1016/j.matcom.2010.07.009 (2010); arXiv: 0911.0741.

Формирование обратного потока энергии на поверхности водорода

Квадратная ячейка, a=41 mm. Накачка на частоте 24 Гц.

14.5 ⇒7.6 Гц + 6.9 Гц 12 Гц ⇒6.9 Гц + 5.1 Гц 7.6 Гц ⇒5.1 Гц +2.5 Гц 2.5 Гц ⇒1.9 Гц +0.6 Гц

Формирование низкочастотных гармоник.

Прямоугольная ячейка, а=40 мм. в = 20 мм

Частота накачки $f_p = \omega/2\pi = 28.5 \ \Gamma$ ц при амплитуде $U_p = 220 \ B$. Стрелкой указано положение f_p . $U_{dc} = 800 \ B$

Стационарный спектр при понижении частоты накачки до f_p= ω/2π =28.3 Гц при той же амплитуде U_p=220 B.

<mark>9.7 Гц + 9.7 Гц = 18.6Гц + 0.8Гц</mark>

Рис. 3. Временная эволюция спектра P_{ω} при ступенчатом повышении амплитуды накачки U_p от 120 до 220 В через 15 с после начала записи. Частота накачки $f_p = 28.2 \,\Gamma$ ц. Штриховая кривая – зависимость от времени амплитуды пика на частоте накачки. Сплошные кривые – амплитуды субгармоник $f_1 = 9.7 \,\Gamma$ ц, $f_2 = 18.6 \,\Gamma$ ц и $f_3 = 0.8 \,\Gamma$ ц (амплитуда волны f_3 умножена на 5).

Последующие изменения: накачка на частоте f_p=28.3 Гц, амплитуда накачки уменьшена до U_p=125 В.

Генерация субгармоник. Сверхтекучий гелий.

Интенсивная накачка на высокой частоте приводит к генерации низкочастотных субгармоник. Обратный каскад в дискретной системе?

G. V. Kolmakova, b, L. V. Abdurakhimova, Yu. M. Brazhnikova, A. A. Levchenkoa, and Yu. V. L'vovc, PR E 2015

А где же вихри?

Двумерная турбулентность

Поверхностное течение жидкости, вызванное волнами Фарадея. Частота 50 Гц, ускорение 1.5 g.

A. von Kameke, F. Huhn, G. Fernández-García, A. P. Muńuzuri, and V. Pérez-Muńuzuri, Phys. Rev. Lett. 107, 074502 (2011)

M. Faraday, Phil. Trans. R. Soc. London, 121, 299 (1831)

PHYSICAL REVIEW X 4, 021021 (2014)

Three-Dimensional Fluid Motion in Faraday Waves: Creation of Vorticity and Generation of Two-Dimensional Turbulence

 N. Francois, ^{1,*} H. Xia,¹ H. Punzmann,¹ S. Ramsden,² and M. Shats¹
¹Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
²National Computational Infrastructure (NCI) Vizlab, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
(Received 6 December 2013; revised manuscript received 27 March 2014; published 2 May 2014)

Flow driven by Faraday waves excited at the water surface at $f_0 = 10$ Hz and a = 0.04g in a 40×40 cm² square container.

Завихренность на поверхности квадратной ячейки

Стоячие волны

 $h = H_1 \cos(\omega t) \cos(kx) + H_2 \cos(\omega t + \psi) \cos(ky)$ $\varpi_z(0) = -(2 + \sqrt{2}) \sin \psi H_1 H_2 \omega k^2 \sin(kx) \sin(ky).$

Бегущие волны

 $h = H_1 \cos(\omega t - kx) + H_2 \cos(\omega t - ky).$ $\varpi_z(0) = (2 + \sqrt{2})H_1 H_2 \omega k^2 \sin(kx - ky).$

Завихренность на поверхности почти квадратной ячейке, 42.7 Гц. Капиллярные волны.

 $\varpi_z(0) = -(2+\sqrt{2})\sin\psi H_1 H_2 \omega k^2 \sin(kx)\sin(ky). \ \ \varpi_z(0) = (2+\sqrt{2})H_1 H_2 \omega k^2 \sin(kx-ky).$

В случае двух стоячих перпендикулярных волн на поверхности жидкости формируется квадратная решетка вихрей с периодом равным длине волны накачки. Гравитационные волны.

$$\Omega(\mathbf{x}, \mathbf{y}) = -(2 + \sqrt{2}) \sin(\psi) H_1 H_2 \omega k^2 \sin(kx) \sin(ky)$$
$$\Omega = \frac{\partial V_x}{\partial y} - \frac{\partial V_y}{\partial x} = \operatorname{rot} \mathbf{V},$$

Распределение завихренности на поверхности воды при накачке двумя плунжерами на частоте 3 Гц, Разность фаз = 90 град.

Почему сохранили
$$(2+\sqrt{2})$$
 $\,$

С. В. Филатов, Д. А. Храмов, А. М. Лихтер, А. А. Левченко Поверхность, 2017

Стоит ожидать, что завихренность будет зависеть от глубины как: $\Omega(z) \sim \sqrt{2}e^{-\sqrt{2}kz} + 2e^{-2kz}$

Пленка на поверхности жидкости

$$\Omega = \left[2 + \sqrt{2} + \frac{a^2}{2\gamma(a^2 - a\sqrt{2} + 1)}\right] \Lambda(sin(kx) sin(ky))$$
(3)

Увлечение Стокса и Эйлерова завихренность.

где $\gamma = \sqrt{\nu k^2/\omega} \ll 1$ - безразмерный параметр, характеризующий слабое затухание волны на чистой поверхности жидкости, ν - коэффициент кинематической вязкости жидкости, *a* — параметр, учитывающий наличием вязких потерь в пленке, при отсутствии пленки а=0 формула (4) переходит в

$$\Omega_E(\mathbf{t}) = \left[\frac{a^2}{2\gamma(a^2 - a\sqrt{2} + 1)} + \sqrt{2}\right] \Lambda(\sin(kx) \sin(ky) \times \operatorname{Erf}(\sqrt{2\nu k^2 t}))$$
(6)

Influence of a compressible _film on surface waves and generation of eddy currents Vladimir M. Parfenyev1,2y and Sergey S. Vergeles1,2

PRF, 2017

Наличие пленки на поверхности воды увеличивает генерацию завихренности на поверхности и в объеме во много раз.

А) Зависимость произведения H_1H_2 от времени, В) Зависимость завихренности Ω от времени при разных амплитудах волн, распространяющихся вдоль направления Х. 1 - 0.3 мм, 2 - 0.6 мм, 3 - 0.8 мм, 4 - 1.1 мм, 5 - 1.4 мм, 6 - 1.7 мм.

Сверхтекучий гелий

Эксперимент Капицы

Kapitza P.L. 1938

Эксперимент заключается в следующем. В большой сосуд с гелием (T < 2,2 K) была погружена бульбочка с припаянной к ней трубочкой-капилляром. В этой бульбочке гелий слегка подогревался.

Капица поместил напротив отверстия капилляра легкое крылышко. Как только в бульбочке включался нагреватель, из отверстия капилляра начинала бить струя гелия. Невидимая, она достаточно зримо давлением своим отклоняла крылышко.

П.Л. Капица

Э.Л. Андроникашвили

Л.Д. Ландау

Ларс Онзагер

Эффект

сверхтекучести был открыт Петром Капицей и Джоном Ф. Алленом, а также Доном Мизенером в 1937 году. Оннес, возможно, наблюдал сверхтекучий фазовый переход 2 августа 1911 года, в тот же день, наблюдал когда OH сверхпроводимость меркурия. С тех пор был описан OH С помощью феноменологических микроскопических И теорий.

$$\rho = \rho_n + \rho_s$$

В сверхтекучей фазе циркуляция скорости является дискретной величиной.

$$\Gamma = \int_L V dl = n \frac{h}{m}$$
замкнутый контур в пространстве.

где L – замкнутый контур в пространстве

Завихренность Ω поверхностного течения сверхтекучей компоненты также является дискретной величиной, так как

 $\Gamma = \int_{S} rot \, V \, ds,$

где S – площадь замкнутого контура.

Vinen J., Ткаченко В.К.

В 1950-х годах Холл и Винен провели эксперименты, установившие существование квантованных вихревых линий в сверхтекучем гелии. В 1960-х годах Рейфилд и Рейф установили существование квантованных вихревых колец. Паккард наблюдал пересечение вихревых линий со свободной поверхностью жидкости. В 2006 году группа из Университета Мэриленда визуализировала квантованные вихри с помощью мелких индикаторных частиц твердого водорода.

Сверхтекучий гелий At T = 0K, Golov, Nemirovskii:

 $(\Omega = 0.21 \text{ rad s}^{-1} \text{ or } \text{Re}_{\text{s}} \approx 30)$

Без поверхности жидкости.

P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, W. F. Vinen, Phys. Rev. Lett. 99, 265302 (2007)

С поверхностью ???

Электроны захватываются квантовыми вихрями. Глубина ямы ~ 100К.

R.A. Ferrel, Phys. Rev. 108, 167 (1957)

$$\begin{split} W = & (\pi h^2 / 2m R^2) + 4\pi \alpha R^2 + 4\pi R^3 P / 3 \\ m - масса свободного электрона \\ \alpha - коэффициент поверхностного натяжения \\ При нулевом давлении R⁴ = (\pi h^2 / 8m\alpha). \\ R- \approx & 10 Å. \end{split}$$

 $eE = e^2/16 \mathbf{z}_0^2 \pi \varepsilon_0 \left(\varepsilon_l - \varepsilon_g\right)/\varepsilon_l \left(\varepsilon_l + \varepsilon_g\right)$

1 – термометр, 1-2 – плунжер, верхняя пластина, S1, S2 - вертикальные стороны ячейки

Временные зависимости

T = 1,5 K

T = 2,1 K

Прижимающее поле, В

$$T = 1,5 K$$

Что дальше?

Заключение

Экспериментально исследованы процессы формирования турбулентных каскадов энергии на поверхности воды.

Жидкий водород и гелий – превосходные жидкости для исследования нелинейных волновых явлений и проверки предсказаний теории волновой турбулентности.

Турбулентные каскады, полученные при различных накачках, хорошо описываются в рамках теория волновой турбулентности. Но...

В режиме дискретной турбулентности наблюдаются локальные максимумы энергии.

Обратный перенос энергии в проведенных экспериментах обусловлен трехволновым взаимодействием. Конденсация?

Волны на поверхности сверхтекучего гелия формируют квантовые вихри.

Квантовые вихри сосредоточены под поверхностью в вязком подслое жидкого гелия.

Спасибо за внимание!