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Introduction. Acoustic turbulence: weak vs. strong

As well known, the weak turbulence theory (WTT) is
based on the assumption that the nonlinear interaction of
waves is weak in comparison with the linear wave
dispersion. Thereby, initially Gaussian-distributed linear
waves with different k almost remain this property when
weak nonlinearity is taken into account. Each wave
moving with its own frequency and wave vector
experiences the influence of other waves at distances L

greater its wavelength, ∝ k−1. This leads to weak
turbulence description using kinetic equations for nk .

In the leading approximation in nonlinearity, the kinetic
equations for WTT describe either decay processes
(1 → 2),

ωk = ωk1 + ωk2 , k = k1 + k2,
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Introduction. Acoustic turbulence: weak vs. strong

or 4-wave interaction with the resonance condition

ωk + ωk1 = ωk2 + ωk3 , k+ k1 = k2 + k3.

For linear dependence of ω on k these conditions are
satisfied for parallel ki For weak positive dispersion,

ωk = kcs(1 + a2k2 + ...),

the decay processes are allowed. For negative
dispersion, the scattering 2 → 2 is allowed.
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Introduction. Acoustic turbulence: weak vs. strong

In this lecture, we consider both weak positive dispersion
and dispersionless cases. In the WTT, the kinetic
equation is written as

∂nk

∂t
= 2π

∫

dk1dk2 (Tkk1k2 − Tk1kk2 − Tk2kk1) ,

where

Tkk1k2 = |Vkk1k2 |
2(nk1nk2 − nknk2 − nknk1)

δ (k− k1 − k2) δ (ωk − ωk1 − ωk2) .

Turbulence spectrum in the 3D isotropic case is given as
E(k) = (2π2)−1k3csn(k).
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Introduction. Acoustic turbulence: weak vs. strong

In the weak dispersion limit,
Vkk1k2 = C(kk1k2)

1/2,

is the homogeneous function of their arguments of power
3/2.

Therefore in the long-wave region the kinetic equation
has the power type spectrum as it was demonstrated first
time by Zakharov (1965) and later by Zakharov and
Sagdeev (1970):

E(k) = CKZǫ
1/2k−3/2.

This is the Kolmogorov spectrum corresponding to
constant energy flux ǫ.

According to our calculation,

CKZ =
[

3
4π(π−1+ln 16)

]1/2

≈ 0.22.
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Introduction. Acoustic turbulence: weak vs. strong

As was shown by Zakharov (1965), in spite of presence
of singularities provided by two resonant conditions, after
averaging over angles in the KE singularities occur
integrable. This is a property of 3D when the spectrum
can be found by means of Zakharov transformation. In
2D, the spectrum (see Griffin, Krstulovic, L’vov, Nazarenko
(2022)) contains the dispersion length: E(k) ∝ a−1k−1.

The existence of the Zakharov-Sagdeev spectrum was
confirmed in a number of papers mainly for 3D isotropic
KE.

In this lecture, we will show that in direct numerical
simulation of 3D acoustic turbulence the structure of the
spectra is not isotropic, especially in the region of small k.
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Introduction. Acoustic turbulence: weak vs. strong

In 3D simulations we first time observed the appearance
of the WT Zakharov-Sagdeev (ZS) spectrum. This
spectrum is realized at large enough k where the
turbulence is almost isotropic. In the small k, close to
pumping, the distribution is very anisotropic, representing
set of jets.

Unlike WTT, in the dispersionless case, the situation is
very different. According to Kadomtsev-Petviashvili
(1972) the (strong) acoustic turbulence can be
considered as a random set of shocks which provides the
KP spectrum E(k) ∝ k−2. Such dependence appears due
to the density jumps.
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Introduction. Acoustic turbulence: weak vs. strong

As we will show in this in our numerical experiments (at
a = 0) the KP spectrum is realized for large enough
pumping. The main contribution to the spectrum comes
from the shocks.

If the pumping amplitudes have intermediate values,
instead of the KP spectrum we observed ZS spectrum.
The latter is connected with the jet distributions in
k-space. These jets start at the pumping region and
vanish at the large k. The jets have the form of cones.
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Introduction. Acoustic turbulence: weak vs. strong

Appearance of ZS spectrum for the intermediate pumping
in the dispersionless case is connected with
compensation of nonlinearity by diffraction for each jet.
Diffraction in this case plays a role of dispersion. This
compensation gives the inverse characteristic time ∝ nk

that leads to the ZS spectrum.

In the WT regime, the jets concentrate near pumping
region, have the cone forms. With increasing k the cone
angles grow and the energy distribution comes almost
isotropic where ZS spectrum is formed.
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Basic equations

DNS of acoustic turbulence was carried out in the
framework of the nonlinear string equation (Zakharov,
1965):

utt = ∆u− 2a2∆2u+∆(u2).

In 1D, this equation is integrable by IST (Zakharov 1973).
In 3D, this model was first used by Zakharov to study WT.
The dispersion law is

ω2 = k2 + 2a2k4, k = |k|,

which at ka ≪ 1 gives weak positive dispersion.
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Basic equations

The equation belongs to Hamiltonian systems:

ut =
δH

δφ
, φt = −

δH

δu
,

where u has the meaning of density fluctuation, φ is the
hydrodynamic potential (v = ∇φ), and

H =
1

2

∫

[

(∇φ)2 + u2
]

dr+

∫

a2(∇u)2dr+
1

3

∫

u3dr

≡ H1 +H2 +H3.

Here H1 is the sum of the kinetic and potential energies of
linear dispersionless waves. H2 is responsible for the
dispersive part , and H3 describes the nonlinearity.
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Basic equations

Transformation to the normal variables ak and a∗k is
written as

uk =

(

k2

2ωk

)1/2

(ak + a∗
−k),

φk = −i
( ωk

2k2

)1/2

(ak − a∗
−k),

when equations take the standard form :
∂ak
∂t

= −iδH/δa∗k,

where

H =

∫

ωk|ak|
2dk+

1

2

∫

Vk1k2k3

(

a∗k1ak2ak3+

+ak1a
∗

k2
a∗k3

)

δ (k1 − k2 − k3) dk1dk2dk3.
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Basic equations

At ka ≪ 1 we will take into account the dispersion only in
the quadratic H,

ωk = k(1 + a2k2),

but in the matrix element, it will be neglected:
Vk1k2k3 =

1
8π3/2 (k1k2k3)

1/2 .

This limit in the WTT gives ZS spectrum as exact solution
of the KE corresponding to the constant energy flux ǫ.

Note that the WT regime realizes when
between H1, H2 and H3 the following inequalities are satis-
fied: H1 ≫ H2 ≫ H3

which were verified in the DNS.
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Basic equations

As was first noted by Zakharov, in the case of 3D isotropic
distributions, the dispersion contribution in ωk can be
neglected, despite the presence of the product of two
delta functions with respect to frequencies and wave
vectors in the collision term giving a singularity in the
kinetic equation. This singularity turns out to be integrable
after averaging over the angles. As a result, the kinetic
equation admits a stationary power-law solution: nk ∝ kα.
The exponent α for the Kolmogorov-type spectrum is
found using the Zakharov transformations: α = −9/2,
which corresponds to the Zakharov-Sagdeev spectrum:

E(k) = CKZǫ
1/2k−3/2.
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Basic equations

For modeling turbulence we include both pumping and
damping terms,

ut = −∆φ+ F(k, t)− γku, φt = −u+ 2a2∆u− u2,

γk is responsible for dissipation and the forcing term
F(k, t) are given as:
γk = 0, k ≤ kd,
γk = γ0, k > kd,
F(k, t) = F (k) · exp[iR(k, t)],
F (k) = F0 · exp[−(k − k1)

4/k4
2], k ≤ k2,

F (k) = 0, k > k2.
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Basic equations

Here R(k,t) are random numbers uniformly distributed in
the interval [0, 2π], γ0 and F0 are constants. k1
corresponds to the maximum pumping, k2 sets its width,
and k3is the scale at which dissipation occurs.

Numerical integration of the system was carried out in a
periodic domain (2π)3 using spectral methods with the
total number of harmonics N3 = 5123. To suppress the
aliasing effect we null harmonics with ka ≥ N/3. We
present results of numerical simulation for the following
parameters: kd = 125, k1 = 3, k4

2 = 6, γ0 = 100,
a = 2.5 · 10−3, F0 = 5 · 105. With this choice of parameters,
the inertial interval was more than one decade. The
maximum dispersion addition at the end of the inertial
interval, k = kd, was (kda)

2 ≈ 0.1.
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Simulation results: WT

Numerically we observed a transition to weak turbulence
regime. Fig. 1 shows how the total energy of the system
evolves. The rather quick transition can be seen to the
quasi-stationary regime. The inset to Fig.1 shows the
time dependencies of the dispersive part of the energy H2

and the nonlinear interaction energy H3. Both
contributions H2 and H3 turn out to be small compared to
H1. The dispersive part of the energy exceeds the energy
of the nonlinear interaction by almost an order of
magnitude, which indicates on the realization of a weakly
nonlinear regime. Thus, the total energy in the inertial
interval is approximately equal to H1 ≈

∫

ǫkdk, where
ǫk = k|ak|

2 is the wave energy density in k-space.
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Simulation results

Total energy of the system versus time for a = 2.5 · 10−3. The
inset shows the time dependencies of the dispersive part of
the energy H2 and the nonlinear interaction energy H3.
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Simulation results: WT

The behavior of the spectrum of space-time Fourier
transform of the function u(r, t) shown in Fig.2 also
testifies to the weakly nonlinear character of wave
propagation. The figure shows that the wave energy is
concentrated along the linear dispersion relation. Line
broadening is due to nonlinearity. For almost the entire
inertial interval, this broadening does not exceed the
linear dispersion. For small k, the broadening is
comparable to the dispersion. For larger k, the dispersion
exceeds the nonlinear broadening, which agrees with the
ratio of the corresponding contributions H2 and H3.
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Simulation results: WT

The space-time Fourier transform |u(k, ω)|2 is shown in
logarithmic scale. The black dotted line corresponds to the
exact value of the dispersion curve, the white dotted line
corresponds to the non-dispersive wave propagation, ω = |k|
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Simulation results: WT

The numerical experiment shows that after the system
enters the quasi-stationary state, the behavior of u(r)
acquires a complex (turbulent) character. In Fig.3 this
behavior demonstrates the dependence of the function
u(r) in the z = 0 plane for the quasi-stationary state at the
moment t = 2500. At the same time, the distribution of the
energy density ǫk of turbulent fluctuations in the k-space
is not isotropic. The anisotropy is especially pronounced
in the region of small wavenumbers near the pumping.
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Simulation results: WT

Section of the function u(r) by z = 0 plane is shown at the
moment t = 2500 corresponding to the quasi-stationary state.
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Simulation results: WT

On Fig.4 we present three isosurfaces of the function
|uk| (= ǫ

1/2
k ). As seen, in the region of small

wavenumbers, structures with a large number of jets in
the form of narrow cones appear in the distribution of
turbulent fluctuations. The onset of such structures is the
result of resonant wave interactions at very small k close
to the pumping region when dispersion can be neglected.
As k increases, the cones broaden and the distribution
tends to be isotropic, see Fig.5. In this figure, the blue
color (at k ≥ 30) shows a tendency to spectrum
isotropization, which is associated with an increase in
dispersion with growing k and accordingly with an angular
broadening of the resonant surface by an angle of the
order of ka.
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Simulation results: WT

Isosurfaces of the Fourier spectrum of |uk| = u0 = 5 · 10−5,
t = 2500.

( )a

( )b
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Simulation results: WT

Fourier spectrum of |uk| ≡ ǫ
1/2
k in section kz = 0 (logarithmic

scale), t = 2500
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Simulation results: WT

The generation of jets is associated with two possible
causes: linear and non-linear. The first one is the
discreteness in the pumping region, 1 ≤ k ≤ 6. Secondly,
this is the tendency of the dispersion to zero at k → 0; the
3-wave resonance conditions are satisfied for an arbitrary
ray. The beams that form the jets have an advantage over
other beams. This process, the cooperation of rays into a
jet, has a clearly nonlinear character. This fact follows
from the numerical simulations, for which the contrasts in
intensity in the jets and the regions between them are
significant: the difference reaches two orders of
magnitude. Such a jump in intensity can not be explained
only by a small anisotropy in pumping, but has a
nonlinear origin, possibly due to the acoustic collapse.

Acoustic turbulence: from Zakharov-Sagdeev spectrum to Kadomtsev-Petvishvili spectrum



Simulation results: WT

It is clearly seen from Fig.6 that the spectrum of E(k)

acquires a power law behavior. There are two regions
with different behavior of the spectrum in the inertial
interval. In the region of large k, the spectrum of weak
acoustic turbulence coincides with the ZS spectrum with
high accuracy, and in the long-wave region, deviations
from this spectrum are observed, which, in our opinion,
arise due to jets, whose role is significant at small k. It
should be noted that similar large deviations of an
oscillatory nature from the Zakharov-Sagdeev spectrum
were observed numerically in the framework of the GP
equation, Proment and Co (2012). These deviations can
be related to the anisotropy caused by the presence of
jets. No jets were found in this experiment .
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Simulation results: WT

The turbulence spectrum E(k) measured in the
quasi-stationary state, the black dotted line corresponds to
the Zakharov-Sagdeev spectrum, the red solid line
corresponds to the Kadomtsev-Petviashvili spectrum.
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Simulation results: WT

The WT Zakharov-Sagdeev dependence on ǫ. The numerical
Kolmogorov-Zakharov constant CKZ ≈ 0.24. Kinetic isotropic
equation gives CKZ ≈ 0.22.
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Simulation results: WT

We measured PDF for |ux| and found that it is is close to a
normal Gaussian distribution. The found Skewness
S = 〈u3

x〉/〈u
2
x〉

3/2 is near 6.4 · 10−3, and Kurtosis
K = 〈u4

x〉/〈u
2
x〉

2 ≈ 3.31. Deviations of these values from S = 0

and K = 3 for Gaussian distribution characterize extreme
events.
All these results show that we obtain 3D Zakharov-Sagdeev
spectrum for weak turbulence regime when wave dispersion
is larger than the nonlinearity.
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Zakharov-Sagdeev spectrum in dispersionless case a = 0

The Hamiltonians H1 and H3 in the dispersionless case.
Pumping and damping are the same as in the WT regime.
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Zakharov-Sagdeev spectrum in dispersionless case a = 0

E(k) and n(k) measured in the quasi-stationary state
corresponds to the ZS spectrum.
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Zakharov-Sagdeev spectrum in dispersionless case a = 0

The isosurface of |uk| (hedgehog) in the quasi-stationary
state (left) and the isosurface of one jet (right).

(a) (b)
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Zakharov-Sagdeev spectrum in dispersionless case a = 0

Distribution of |u(x, y, z = 0)| (left) and distribution of
|ujet(x, y, z = 0)| (right). For one jet: Hdif ≫ H3 where
Hdif =

∫

|kx||ak|
2(k2

⊥
/k2

x)dk is the contribution in H due to
diffraction of the jet.

(a) (b)

Acoustic turbulence: from Zakharov-Sagdeev spectrum to Kadomtsev-Petvishvili spectrum



Zakharov-Sagdeev spectrum in dispersionless case a = 0

In this case as for the weak wave dispersion the PDF is
close to Gaussian distribution.
Skewness S ≈ 4.9 · 10−2 and Kurtosis K ≈ 3.47.

Thus, in the dispersionless case we have again
Zakharov-Sagdeev spectrum corresponding to weak
turbulence regime when diffraction plays the role of wave
dispersion.
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Strong acoustic turbulence

Relations between Hamiltonians
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Strong acoustic turbulence

Jets at kz = 0

k

k
y

Acoustic turbulence: from Zakharov-Sagdeev spectrum to Kadomtsev-Petvishvili spectrum



Strong acoustic turbulence

KP spectrum for E(k).
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Strong acoustic turbulence

(a) - 2D distribution |u(x, y, z = 0)| and (b) - 2D distribution
|∇u(x, y, z = 0)|.

(a) (b)
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Table for all regimes

Dispersion length a = 2.5 · 10−3 (a) and for a = 0 (b) and (c).
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Conclusion

We have established that due to the pumping the system
of nonlinear interacting weakly dispersive acoustic waves
quickly enough passes into the quasi-stationary chaotic
state.

In the quasi-stationary regime, in the long-wavelength
region, close to pumping, we observed in the turbulence
spectrum the appearance of narrow jets in the form of
cones, which expand upon transition to the short-wave
region.
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Conclusion

In the region of large k the spectral energy density εk

tends to an isotropic distribution, for which the dispersion
remains weak. In this range of scales, the turbulence
spectrum calculated in the stationary state agrees with a
high accuracy with the analytical Zakharov-Sagdeev
spectrum of weak acoustic turbulence.

It has been numerically demonstrated that the criteria of
weak turbulence are fully satisfied for this spectrum.
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Conclusion

In the dispersionless case we have found the intermediate
regime when the Zakharov-Sagdeev spectrum is
observed. The energy distribution in the k-space
represents a set of jets. Such regime is realized for the
same pumping and damping as in the WT situation.

For this regime we have established that the jet
Hamiltonian due to diffraction is of the same order of
magnitude as the nonlinear Hamiltonian. This means that
diffraction plays a role of wave dispersion in this case.
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Conclusion

With increasing of the pumping amplitude (approximately
in 10 times more than in the intermediate regime) we
have observed the Kadomtsev-Petviashvili spectrum
E(k) ∝ k−2. The turbulence state in this case is a random
set of shocks.

The results obtained are the first reliable observations of
the spectrum of both weak and strong turbulence of
acoustic waves in media with positive dispersion and
dispersionless media in direct three-dimensional
numerical simulations.
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