Автомодельный рост конических острий на поверхности проводящей жидкости в электрическом поле

Н.М. Зубарев

Институт электрофизики УрО РАН, Россия, Екатеринбург Физический институт им. П.Н. Лебедева РАН, Россия, Москва

ххі научная школа "Нелинейные волны -2024"

Нижний Новгород, 5 - 11 ноября

Неустойчивость Тонкса-Френкеля свободной поверхности идеально проводящей жидкости

L. Tonks, A theory of liquid surface rupture by a uniform electric field, *Phys. Rev.*, 48 (6), 562 (1935).
I.Y. Frenkel, On the Tonks theory of the rupture of a liquid surface by an uniform electric field in vacuum, *Zh. Eksp. Teor. Fiz.*, 6 (4), 347 (1936).

Неустойчивость Тонкса-Френкеля свободной поверхности идеально проводящей жидкости

W. Driesel, et al. *J. Vac. Sci. Technol. B*, **14**, 3367 (1996)

L.M. Baskin, et al. *IEEE Trans. Dielec. Electr. Insul.* **2**, 231 (1995)

Распределение электрического поля вокруг идеального проводящего конуса

Потенциал электрического поля удовлетворяет уравнению Лапласа

$$\frac{1}{R^2}\frac{\partial}{\partial R}\left(R^2\frac{\partial\Phi}{\partial R}\right) + \frac{1}{R^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Phi}{\partial\theta}\right) = 0,$$

$$R = \sqrt{r^2 + z^2}, \qquad \theta = \arctan(r/z),$$

которое должно решаться совместно с условиями

$$\partial \Phi / \partial \theta \Big|_{\theta=0} = 0, \quad \Phi \Big|_{\theta=\pm\pi\mp\alpha} = 0.$$

Самоподобное распределение потенциала электрического поля выражается через функцию Лежандра:

$$\Phi(\boldsymbol{R},\boldsymbol{\theta}) \propto \boldsymbol{R}^{\gamma} \boldsymbol{P}_{\gamma} \big(\cos \boldsymbol{\theta} \big).$$

Связь между параметром γ , определяющим степень неоднородности распределения поля, и полууглом раствора конуса α задается выражением:

$$P_{\gamma}(-\cos\alpha)=0$$

$$\gamma = 1/2, \quad \alpha_{\rm T} = 49.3^{\circ}$$

$$\gamma = 1/4, \quad \alpha_{_V} = 16.6^\circ$$

V.G. Suvorov, N.M. Zubarev. Formation of the Taylor cone on the surface of liquid metal in the presence of an electric field. *J. Phys. D: Appl. Phys.*, **37** (2), 289 (2004).

Автомодельное течение идеальной жидкости: исходные уравнения

$$\begin{split} \Phi_{rr} + r^{-1}\Phi_r + \Phi_{zz} &= 0, \qquad z < \eta(r,t), \\ \varphi_{rr} + r^{-1}\varphi_r + \varphi_{zz} &= 0, \qquad z > \eta(r,t), \\ \Phi_t + \frac{\Phi_r^2 + \Phi_z^2}{2} &= \frac{\varphi_r^2 + \varphi_z^2}{2} + \frac{1}{\sqrt{1 + \eta_r^2}} \left(\frac{\eta_{rr}}{1 + \eta_r^2} + \frac{\eta_r}{r}\right), \quad z = \eta(r,t), \\ \eta_t &= \Phi_z - \eta_r \Phi_r, \qquad z = \eta(r,t), \\ \varphi &= 0, \qquad z = \eta(r,t), \\ \varphi &= 0, \qquad r^2 + z^2 \to \infty, \\ \varphi_r^2 + \varphi_z^2 \to 0, \qquad r^2 + z^2 \to \infty, \\ \varphi_r^2 + \varphi_z^2 \to 0, \qquad r^2 + z^2 \to \infty, \\ \Phi_r &= 0, \qquad r = 0, \\ \varphi_r &= 0, \qquad r = 0, \\ \eta_r &= 0, \qquad r = 0. \end{split}$$

N.M. Zubarev, Formation of conic cusps at the surface of liquid metal in electric field, JETP Lett. 73, 544 (2001)

Автомодельная редукция

 $\Phi(x, y, z, t) = \tilde{\Phi}(\tilde{r}, \tilde{z}) \tau^{1/3},$ $r= ilde{r} au^{2/3},$ $z= ilde{z} au^{2/3}.$ $\lambda \propto (t_c - t)^{2/3}$ $arphi(x,y,z,t) = ilde{arphi}(ilde{r}, ilde{z}) au^{1/3},$ $\eta(x,y,t) = ilde\eta(ilde r) au^{2/3},$ $au = t_c - t_c$ $\tilde{\Phi}_{\tilde{r}\tilde{r}} + \tilde{r}^{-1}\tilde{\Phi}_{\tilde{r}} + \tilde{\Phi}_{\tilde{z}\tilde{z}} = 0, \qquad \tilde{z} < \tilde{\eta}(\tilde{r}),$ $\tilde{\varphi}_{\tilde{r}\tilde{r}} + \tilde{r}^{-1}\tilde{\varphi}_{\tilde{r}} + \tilde{\varphi}_{\tilde{z}\tilde{z}} = 0, \qquad \tilde{z} > \tilde{\eta}(\tilde{r}),$ $\frac{2\tilde{\Phi}_{\tilde{r}}\tilde{r}+2\tilde{\Phi}_{\tilde{z}}\tilde{\eta}-\tilde{\Phi}}{3}+\frac{\tilde{\Phi}_{\tilde{r}}^2+\tilde{\Phi}_{\tilde{z}}^2}{2}=\frac{\tilde{\varphi}_{\tilde{r}}^2+\tilde{\varphi}_{\tilde{z}}^2}{2}+\frac{1}{\sqrt{1+\tilde{n}_{\tilde{z}}^2}}\left(\frac{\tilde{\eta}_{\tilde{r}\tilde{r}}}{1+\tilde{\eta}_{\tilde{r}}^2}+\frac{\tilde{\eta}_{\tilde{r}}}{\tilde{r}}\right),\qquad \tilde{z}=\tilde{\eta}(\tilde{r}),$ $2\tilde{\eta}_{\tilde{r}}\tilde{r} - 2\tilde{\eta} = 3\tilde{\Phi}_{\tilde{z}} - 3\tilde{\eta}_{\tilde{r}}\tilde{\Phi}_{\tilde{r}}, \qquad \tilde{z} = \tilde{\eta}(\tilde{r}),$ $ilde{arphi}=0, \qquad ilde{z}= ilde{\eta}(ilde{r}),$ $\tilde{\Phi}_{\tilde{x}}^2 + \tilde{\Phi}_{\tilde{z}}^2 \to 0, \qquad \tilde{r}^2 + \tilde{z}^2 \to \infty,$ $\tilde{\varphi}_{\tilde{x}}^2 + \tilde{\varphi}_{\tilde{z}}^2 \to 0, \qquad \tilde{r}^2 + \tilde{z}^2 \to \infty,$ $\tilde{\Phi}_{\tilde{r}} = 0, \qquad \tilde{r} = 0,$ $\tilde{\varphi}_{\tilde{r}} = 0, \qquad \tilde{r} = 0,$ $\tilde{\eta}_{\tilde{r}} = 0, \qquad \tilde{r} = 0.$

Автомодельное решение в пределе $R \to \infty$

Динамический конус Тейлора

Не следует путать стационарные конические образования на поверхности жидкости в электрическом поле (обычные статические конусы Тейлора) и динамические конусы, возникающие в процессе развития неустойчивости Тонкса-Френкеля.

N.M. Zubarev, JETP Lett. 73, 544 (2001)

G.I. Taylor, Proc. R. Soc. Lond. A 280, 383 (1964)

V.G. Suvorov, N.M. Zubarev. Formation of the Taylor cone on the surface of liquid metal in the presence of an electric field. *J. Phys. D: Appl. Phys.*, **37** (2), 289 (2004).

Доминантная мода неустойчивости Тонкса-Френкеля

Закон дисперсии для случая $E_0 >> E_c$.

Инкремент неустойчивости: $\gamma = \text{Im } \omega$.

Автомодельное течение идеальной жидкости: качественное рассмотрение на основе закона дисперсии

Дисперсионное соотношение для вязкой жидкости

При уменьшении характерного пространственного масштаба задачи возникает необходимость учета конечности вязкости жидкости.

Закон дисперсии электрокапиллярных поверхностных волн на свободной поверхности идеальной жидкости в вертикальном электрическом поле напряженностью E_0 :

$$\rho\omega^2 = -\varepsilon_0 E_0^2 k^2 + \alpha k^3.$$

Закон дисперсии гравитационных волн на свободной поверхности вязкой жидкости [L.D. Landau, E.M. Lifshitz, *Fluid Mechanics*, Pergamon Press, NY, 1959]:

$$\rho \left(2\nu k^2 - i\omega\right)^2 + \rho g k = 4\rho v^{3/2} k^3 \sqrt{\nu k^2 - i\omega}.$$

Закон дисперсии поверхностных волн на границе вязкой жидкости в вертикальном электрическом поле строится заменой $\rho g k \rightarrow -\varepsilon_0 E_0^2 k^2 + \alpha k^3$. Находим:

$$\rho \left(2\nu k^{2} - i\omega \right)^{2} - \varepsilon_{0} E_{0}^{2} k^{2} + \alpha k^{3} = 4\rho \nu^{3/2} k^{3} \sqrt{\nu k^{2} - i\omega}$$

$$\rho \left(\gamma + 2\nu k^2\right)^2 - \varepsilon_0 E_0^2 k^2 + \alpha k^3 = 4\rho \nu^{3/2} k^3 \sqrt{\gamma + \nu k^2}, \qquad \omega = i\gamma.$$

Дисперсионное соотношение для вязкой жидкости

Снова учтем влияние нелинейности, заменив в законе дисперсии внешнее поле на локальное: $E_0 \to E$.

$$\rho (\gamma + 2\nu k^{2})^{2} - \varepsilon_{0} E^{2} k^{2} + \alpha k^{3} = 4\rho \nu^{3/2} k^{3} \sqrt{\gamma + \nu k^{2}}$$

Доминантная мода неустойчивости определяется условием $\partial \gamma / \partial k = 0$, т.е. $8\rho \nu k (\gamma + 2\nu k^2) - 2\varepsilon_0 E^2 k + 3\alpha k^2 = 12\rho \nu^{3/2} k^2 \sqrt{\gamma + \nu k^2} + 4\rho \nu^{5/2} k^4 / \sqrt{\gamma + \nu k^2}$. Исключая *E*, находим связь между пространственным и временным

масштабами задачи:

$$2\rho k_d^{-1} \left(4\nu^2 k_d^4 - \gamma_d^2 \right) + \alpha k_d^2 = 4\rho \nu^{3/2} k_d^2 \sqrt{\gamma + \nu k_d^2} + 4\rho \nu^{5/2} k_d^4 / \sqrt{\gamma_d + \nu k_d^2} ,$$

$$\gamma_d(k_d) = k_d^{3/2} F(k_d).$$

Здесь *F* – слабая функция, меняющаяся в узком диапазоне

$$0.6\sqrt{\alpha / \rho} < F(k_d) < 0.7\sqrt{\alpha / \rho}$$

при изменении волнового числа k_d от нуля до бесконечности.

Связь между масштабами задачи

$$\gamma_d \propto k_d^{3/2}$$

Для пределов малых (идеальная жидкость) и больших (вязкая жидкость) волновых чисел реализуются принципиально различные зависимости масштабов задачи от локальной напряженности электрического поля *E*:

$$k_{d} \approx \frac{2\varepsilon_{0}E^{2}}{3\alpha}, \qquad \gamma_{d} \approx \frac{2\varepsilon_{0}^{3/2}E^{3}}{3^{3/2}\alpha\rho^{1/2}}, \qquad k_{d} \to 0$$
$$k_{d} \approx \frac{3^{1/3}\varepsilon_{0}^{2/3}E^{4/3}}{2^{2/3}\nu^{2/3}\alpha^{1/3}\rho^{1/3}}, \qquad \gamma_{d} \approx \frac{\varepsilon_{0}E^{2}}{2\nu\rho}, \qquad k_{d} \to \infty$$

Это свидетельствует об изменении характера баланса сил в уравнениях движения. В первом случае основной баланс реализуется между динамическими, электростатическими и капиллярными силами*, а во втором – между электростатическими и вязкими силами**.

* N.M. Zubarev, JETP Lett. 73, 544 (2001)

** S.I. Betelú, M.A. Fontelos, U. Kindelán, O. Vantzos, Phys. Fluids 18, 051706 (2006).

Граница между различными режимами течения

- S.A. Barengolts, I.V. Uimanov, D.L. Shmelev, Prebreakdown Processes in a Metal Surface Microprotrusion Exposed to an RF Electromagnetic Field, *IEEE Trans. Plasma Sci.*, **47** (8), 3400 (2019).
- X. Gao, A. Kyritsakis, M. Veske, W. Sun, B. Xiao, G. Meng, Y. Cheng, F. Djurabekova, Molecular dynamics simulations of thermal evaporation and critical electric field of copper nanotips, *J. Phys. D: Appl. Phys.*, **53** (36), 365202 (2020).

Численные расчеты динамики как слабовязкой (Re велико), так и сильновязкой (Re мало) идеально проводящей жидкости в электрическом поле показывают, что на свободной поверхности за конечное время образуются конические выступы.

$$z = -r \cot \alpha, \qquad r \equiv \sqrt{x^2 + y^2}$$

- G. Albertson and S. M. Troian, Electrified cone formation in perfectly conducting viscous liquids: Selfsimilar growth irrespective of Reynolds number, *Phys. Fluids* **31**, 102103 (2019).

Результаты численных расчетов эволюции заряженных капель проводящей вязкой жидкости в приближении Стокса:

S.I. Betelú, M.A. Fontelos, U. Kindelán, O. Vantzos, Phys. Fluids 18, 051706 (2006).

Оценки для различных членов уравнения Навье-Стокса

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u^2}{\partial z} \approx -\frac{1}{\rho} \frac{\partial p}{\partial z} + v \frac{\partial^2 u}{\partial z^2}$$

$$\frac{u}{\tau} + \frac{u^2}{2\lambda} \approx -\frac{p_{\alpha}}{\rho\lambda} + \frac{p_E}{\rho\lambda} + \frac{\nu u}{\lambda^2}$$

$$\operatorname{Re} = \frac{\lambda u}{v} \approx \frac{\lambda^2}{v\tau} \propto (t_0 - t)^{1/3} \qquad \operatorname{Ca} = \frac{v\rho u}{\alpha} \approx \frac{v\rho\lambda}{\alpha\tau} \propto (t_0 - t)^{-1/3} \qquad \operatorname{We} = \operatorname{Ca} \times \operatorname{Re} = \frac{\rho\lambda u^2}{\alpha} \approx \frac{\rho\lambda^3}{\alpha\tau^2} \approx 10^2$$

Макроскопический масштаб $\lambda >> \lambda_c$

$$\frac{u}{\tau} \propto \frac{u^2}{2\lambda} \propto \frac{p_{\alpha}}{\rho \lambda} \propto \frac{p_E}{\rho \lambda} \propto \frac{1}{(t_0 - t)^{4/3}} \qquad \qquad \frac{\nu u}{\lambda^2} \propto \frac{1}{(t_0 - t)^{5/3}}$$

Микроскопический масштаб $\lambda < \lambda_c$

$$\frac{u}{\tau} \propto \frac{u^2}{2\lambda} \propto \frac{p_{\alpha}}{\rho \lambda} \propto \frac{1}{\left(t_0 - t\right)^{4/3}}$$

$$\frac{p_E}{\rho\lambda} \propto \frac{\nu u}{\lambda^2} \propto \frac{1}{(t_0 - t)^{5/3}}$$

Формирование особенностей на поверхности диэлектрической жидкости

Закон дисперсии:

$$\rho \left(\gamma + 2\nu k^2\right)^2 - \frac{\varepsilon_0 (\varepsilon - 1)^2}{\varepsilon (\varepsilon + 1)} E^2 k^2 + \alpha k^3 = 4\rho \nu^{3/2} k^3 \sqrt{\gamma + \nu k^2}$$

Распределение поля вокруг идеального диэлектрического конуса:

$$\begin{split} \Phi(R,\theta) &= AR^{\gamma}P_{\gamma}(\cos\theta) \qquad \tilde{\Phi}(R,\theta) = BR^{\gamma}P_{\gamma}(-\cos\theta) \\ \left. \left(\left. \frac{\partial \Phi}{\partial \theta} - \varepsilon \frac{\partial \tilde{\Phi}}{\partial \theta} \right|_{\theta=\theta_0} = 0, \qquad \left(\left. \frac{\partial \Phi}{\partial \theta} - \varepsilon \frac{\partial \tilde{\Phi}}{\partial \theta} \right|_{\theta=\theta_0} = 0, \end{split}$$

$$\frac{P_{\gamma}'(\cos\theta_0)P_{\gamma}(-\cos\theta_0)}{P_{\gamma}'(-\cos\theta_0)P_{\gamma}(\cos\theta_0)} = -\varepsilon, \qquad \theta_0 = \pi - \alpha$$

Заключение

Аналитически исследована динамика формирования конических острий на исходно гладкой поверхности идеально проводящей жидкости во внешнем электрическом поле. При формировании особенности кривизна вершины выступа, локальная напряженность поля и скорость жидкости обращаются в бесконечность за конечное время. Продемонстрировано, что в этом процессе можно выделить два масштаба с различным типом поведения жидкости. На макромасштабе применимо приближение идеальной жидкости; формируется конус с углом раствора 98.6°. На микромасштабе определяющую роль играют вязкие эффекты, и формируется конус с предельным углом 33.1°. В обоих случаях реализуются автомодельные режимы течения жидкости, для которых пространственный масштаб уменьшается со временем, следуя степенному закону $(t_0 - t)^{2/3}$, где t_0 – момент коллапса.

N.M. Zubarev. The effect of viscosity on the self-similar growth of conic cusps on the surface of a conducting liquid in an electric field: Limiting cone angle. *Phys. Fluids* **36**, 042102 (2024)

Спасибо за внимание!

ххі научная школа **"Нелинейные волны -2024"**

Нижний Новгород, 5 - 11 ноября