Устойчивость, неустойчивость и хаос в моделях динамики атмосферы

Грицун А.С. ИВМ РАН, asgrit@mail.ru

Прогноз температуры на высоте 2м на 30 дней (где-то зимой)

Через 8-10 дней прогнозируемые траектории расходятся, качество прогноза деградирует.

Прогноз траектории в системе Лоренца, миллион реализаций

Хаотические динамические системы.

$$\lambda_j(u(0)) = \overline{\lim}_{t \to \infty} \frac{1}{t} \ln \frac{|n_j(t)|}{|h_j(0)|} > 0$$

2. Диссипативность = дивергенция правой части меньше нуля,

$$V(t) = V(0) \exp(\int div F(u(\tau)) d\tau) \to 0$$

откуда следует, что фазовый объем сжимается.

3. Поглощающее множество.

D называется поглощающим множеством если

$$\forall B \subset \mathbf{X}$$
$$\exists T(B) : S(t, B) \subset D, \forall t > T.$$

Множество A называется аттрактором динамической системы если

1)A – инвариантно : S(A,t) = A2)A – притягивающее : $\forall B(orp) : S(t,B) \rightarrow A, t \rightarrow \infty$ 3)A – компактно

- Если (полу)динамическая система в конечномерном евклидовом пространстве имеет ограниченное поглощающее множество, то она имеет глобальный аттрактор.
- Аттрактор это «наибольшее» инвариантное множество системы.

Свойства системы Лоренца, характерные для моделей динамики атмосферы, океана, Земной системы

С течением времени траектории с близкими начальными данным разбегаются с (экспоненциальной) скоростью, характеризуемой показателями Ляпунова.

≻С течением времени система «забывает» о конфигурации ансамбля начальных условий (конечная длина интервала потенциальной предсказуемости).

≻Через некоторое время ансамбль состояний становится инвариантным (не зависит от времени), финальное множество состояний (аттрактор), инвариантная плотность вероятности = мера (аттрактор и мера на нем не зависят от начального распределения).

Аттрактор и мера на нем формализуют понятие «климат» (множество состояний климатической системы за достаточно большой промежуток времени).

Эволюция ансамбля траекторий, миллион реализаций (проекция на (х,у))

начальные условия: z=28, x и у равномерно заполняют квадрат [-3,3]x[-3,3]

t=0., 0.2, 2., 10., 20., 60., 100.

Прогноз траектории в системе Лоренца, миллион реализаций

Все простые атмосферные модели:

-уравнение баротропного вихря,

-двухслойная квазигеострофическая модель атмосферы,

-системы двумерных уравнений Навье-Стокса,

 - система «примитивных» уравнений атмосферы, лежащая в основе многих современных моделей общей циркуляции атмосферы

имеют конечномерные аттракторы. Получены некоторые обобщения и на периодический случай

Размерность аттрактора можно оценить по ляпуновским показателям (Формула Каплана-Йорка)

Размерность аттрактора13.56589Число положительных показателей63837Время роста ошибки в е - раз (дни)2665

3QG

T12

T21

Гиперболические системы

$$\frac{du}{dt} = F(u), u \in M \subset \mathbb{R}^N.$$

или, в разрешенном виде $u(t) = S(t)(u_0)$.

Будем считать, что система гладкая. Обозначим

$$dS(t) = S'(t) \mid_{u=u(0)} : \mathbb{R}^N \to \mathbb{R}^N$$

Траектория S(t) называется равномерно гиперболической, если orall t существуют подпространства $E^{S}(u(t))$ и $E^{u}(u(t))$, непрерывно зависящие от u(t), такие что:

1. $R^N = E^s(u(t)) \oplus E^u(u(t)) \oplus X(u(t))$

X(u(t)) инвариантное подпространство вектора скорости F(u(t))

2. для произвольных t, τ пространства инвариантны относительно линейного оператора системы $dS(\tau)(E^{S}(u(t)) = E^{S}(u(t + \tau)),$

$$dS(\tau)(E^u(u(t)) = E^u(u(t+\tau)).$$

3. Линейный оператор системы является на них сжатием/растяжением

$$\|dS(t)v\| < C\lambda^{t} \|v\| \quad v \in E^{s}(u(0)), 1 > \lambda > 0$$

$$\|dS(-t)w\| < C\lambda^{t} \|w\| \quad w \in E^{u}(u(0)).$$

4. Пространства пересекаются с ненулевым углом

$$\gamma(E^s(u(t), E^u(u(t)) > \gamma_0 > 0.$$

Определение.

Если все траектории системы являются равномерно гиперболическими, все константы и размерности можно выбрать одинаковыми, то система называется системой Аносова.

Структурная устойчивость

типичная траектория возмущенной системы может быть приближенная специальной траекторией исходной системы

Аппроксимация траекторий орбитами

любая траекторий системы может быть приближена периодической орбитой с произвольной точностью

Атмосферные модели хаотические, (вероятно) имеют ненулевые Ляпуновские показатели, но (скорее всего) не являются системами Аносова.

Axiom A response formula (Ruelle, 1998, 1999)

$$\frac{d\psi}{dt} = F(\psi) \qquad \qquad \frac{d\psi_{\varepsilon}}{dt} = F(\psi_{\varepsilon}) + \varepsilon \mathcal{F}(\psi_{\varepsilon})g(t)$$

Perturbation changes system measure and statistics (invariant measure, ergodicity)

$$\overline{A} = \int A(\psi) d\mu = \lim_{t \to \infty} \frac{1}{t} \int_{t} A(\psi(\tau)) d\tau \qquad \mu \Longrightarrow \mu_{\varepsilon}(t) \quad \overline{A} \Longrightarrow \overline{A}_{\varepsilon}(t)$$

Up to the second order

$$\delta A_{\varepsilon}(t) = \overline{A} - \overline{A}_{\varepsilon} = \varepsilon \int G_{1}(\tau)g(t-\tau)d\tau + \varepsilon^{2} \iint G_{2}(\tau_{1},\tau_{2})g(t-\tau_{1})g(t-\tau_{2})d\tau_{1}d\tau_{2}$$
$$G_{1}(\tau_{1}) = \int d\mu \Theta(\tau_{1})F_{i}\partial_{i}A(f(S(\tau_{1},x)))/\partial x_{i}$$

$$g(t) = \delta(0) \to \delta A_{\varepsilon,\delta}(t) = \varepsilon G_1(t)$$
$$g(t) = \Theta(0) \to \delta A_{\varepsilon,\Theta}(t) = \varepsilon \int G_1(\tau) d\tau$$
$$\delta A_{\varepsilon,\Theta}(t) = \int \delta A_{\varepsilon,\delta}(\tau) d\tau$$

Аппроксимация статистик орбитами

Среднее вдоль траектории

Аппроксимируется взвешенным средним

$$\overline{\Phi} = \lim_{T \to \infty} \frac{1}{T} \sum_{i} \Phi(\psi_{i})$$

$$\bigcup_{T \to \infty} \frac{1}{W} \sum_{p} w_{p} \Phi_{p} \quad W = \sum_{p} w_{p}$$

Формула для весов в системах Аносова

$$W_p = 1/\exp(T_p \sum \lambda^+)$$

 Φ_p^- значение функционала Φ для *p-ой* периодической точки $\sum_p \lambda^+$ - сумма положительных показателей Ляпунова орбиты *p*

Важны наименее неустойчивы орбиты!

Ruelle, 1999

Хаотическая гипотеза (Galavotti).

Типичную хаотическую систему с большим числом степеней свободы (и большим числом положительных показателей Ляпунова) можно считать системой Аносова, если рассматривается задача вычисления ее макроскопических характеристик (глобальных статистик - интегралов по всему аттрактору).

Внутренняя структура аттрактора

Орбиты могут быть полезными для понимания динамики, аппроксимации траекторий и т.п.

Стационарные точки могут давать мало информации о динамике

Периодические траектории.

Траектория автономной системы полностью определяется начальным условием и временем интегрирования

$$u(T) = S(T, u_0) = u_0.$$

Определение орбиты = система нелинейных уравнений относительно н.у. и периода.

$$\frac{du}{dt} = F(u)$$

$$\rightarrow u^{1} = u_{0} + \tau F(u_{0}), u^{2} = u^{1} + \tau F(u^{1}), \dots, u^{n} = u^{n-1} + \tau F(u^{n-1})$$

$$u^{n} = u^{n-1} + \tau F(u^{n-1}) = u^{n-2} + \tau F(u^{n-2}) + \tau F(u^{n-2} + \tau F(u^{n-2})) = \dots = u_{0}$$

Чтобы найти орбиту нужно решить систему уравнений по отношению к н.у. и периоду.

Как искать орбиты?

$$S(T, u_0) = u_0$$

1. Начальное условие.

$$S(t, u_0), t \in [0, \Theta]$$

$$\min_{t_1, t_s} |S(t_1, u_0) - S(t_2, u_0)|$$

$$u^{(0)} = S(t_1, u_0), T^{(0)} = t_2 - t_1$$

2. Фазовое условие.

$$S(T, u_0) = u_0 \implies u = S(t, u_0) \rightarrow S(T, u) = u,$$

Н.у. может двигаться вдоль орбиты! $S(T, u_0) = u_0; +$ $[u_0]_{k_0}^{(i)} = C$ $(u^{(i+1)} - u^{(i)}, F(u^{(i)})) = 0$ Система из *N* уравнений $S(T, u_0) = u_0$ + фазовое условие

определяют N+1 неизвестное (н.у. орбиты и период)

3. Метод Ньютона

$$\begin{aligned} u^{(i)}, T^{(i)} \\ u^{(i+1)} &= u^{(i)} + h^{(i)}, T^{(i+1)} = T^{(i)} + \tau^{(i)} \\ S(T^{(i+1)}, u^{(i+1)}) &= u^{(i+1)} \rightarrow \\ S(T^{(i)}, u^{(i)}) + \frac{\partial S(T, u)}{\partial T} \Big|_{(T^{(i)}, u^{(i)})} \tau^{(i)} + \frac{\partial S(T, u)}{\partial u} \Big|_{(T^{(i)}, u^{(i)})} h^{(i)} &= u^{(i)} + h^{(i)} \\ S_T &= \frac{\partial S(T, u)}{\partial T} \Big|_{(T^{(i)}, u^{(i)})} S_u = \frac{\partial S(T, u)}{\partial u} \Big|_{(T^{(i)}, u^{(i)})} \Phi^{(i)} &= u^{(i)} - S(T^{(i)}, u^{(i)}) \end{aligned}$$

$$S_{T} = \frac{\partial S(T, u)}{\partial T} \bigg|_{(T^{(i)}, u^{(i)})} S_{u} = \frac{\partial S(T, u)}{\partial u} \bigg|_{(T^{(i)}, u^{(i)})} \Phi^{(i)} = u^{(i)} - S(T^{(i)}, u^{(i)})$$

$$(u^{(i+1)} - u^{(i)}, F(u^{(i)})) = 0 \rightarrow (h^{(i)}, F(u^{(i)})) = 0$$

$$S_{T}\tau^{(i)} + (S_{u} - E)h^{(i)} = \Phi^{(i)} \begin{bmatrix} S_{u} - E & S_{T} \\ F^{(i)} & 0 \end{bmatrix} \begin{bmatrix} h^{(i)} \\ \tau^{(i)} \end{bmatrix} = \begin{bmatrix} \Phi^{(i)} \\ 0 \end{bmatrix}$$

4. Как вычислить S_T, S_u ?

$$S_T = \frac{\partial S(T, u)}{\partial T} \bigg|_{(T^{(i)}, u^{(i)})} = \frac{\partial u}{\partial T} \bigg|_{(T^{(i)}, u^{(i)})} = F(u^{(i)})$$

 $S_u = \frac{\partial S(T,u)}{\partial u} \bigg|_{(T^{(i)},u^{(i)})}$ - полная линеаризация вдоль траектории

$$\begin{bmatrix} S_u - E & S_T \\ F^{(i)} & 0 \end{bmatrix} \begin{bmatrix} h^{(i)} \\ \tau^{(i)} \end{bmatrix} = \begin{bmatrix} \Phi^{(i)} \\ 0 \end{bmatrix}$$

$$[N] g] = [f]$$

решать методом Ньютона дорого! – для каждой итерации метода Ньютона нужно интегрировать полную линеаризованную систему.

 \downarrow

Итерационное решение системы метода Ньютона

 $[N][g] = [f] \rightarrow$ GMRES, Крыловский базис 10-30 векторов, интегрирование линейной системы для 10-30 начальных условий.

$$u^{(i+1)} = u^{(i)} + \kappa h^{(i)}$$
$$T^{(i+1)} = T^{(i)} + \kappa \tau^{(i)}$$

Система Лоренца

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

$$\frac{dt}{dt} = xy - \mu$$

$$\sigma=\!10, \beta=\!8/3, \rho=\!28$$

Число орбит в системе Лоренца

$$N(k) = (2^k - 2 - \sum_p pN(p))/k$$

где k – число элементарных вращений вокруг стационарных точек, p – простые делители.

Период орбиты (у) vs обратный показатель Ляпунова (х)

Значительная неоднородность характеристик неустойчивости даже в простейшем случае

Лоренц-96

$$\dot{X}_{j} = (X_{j+1} - X_{j-2})X_{j-1} - \alpha X_{j} + F, \quad j = 1, \dots, J$$

 $X_{-1} = X_{J-1}, \quad X_{0} = X_{J}, \quad X_{J+1} = X_{1}.$
 $J = 20, F = 5, \text{ and } \alpha = 1$

Период орбиты (у) и обратный показатель Ляпунова(х) в модели Лоренц-96

24 24 22 22 20 20 18 18 16 16 14 14 12 12 10 10 8 6 2 °\$ 03 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 12 13 17 15 16

Период орбиты (у) и

размерность КҮ (х)

в модели Лоренц-96

Значительная изменчивость числа неустойчивых направлений у периодических траекторий и величины первого Ляпуновского показателя свидетельствуют о негиперболичности системы.

Орбиты системы Лоренц-96 в пространстве первых трех моментов (цвет – число неустойчивых направлени)

Barotropic atmospheric system

2D Navier-Stokes system

+ forcing + rotation + boundary&turbulent friction + orography

 $\frac{\partial \Delta \psi}{\partial t} + J(\psi, \Delta \psi + l + H) = -\alpha \Delta \psi + \mu \Delta^2 \psi + f_{ext}.$ Streamfunction Laplacian operator Jacobian operators **Coriolis parameter** $\mu = 6 \cdot 10^{-5}$ $\alpha = 2 \cdot 10^{-3}$ Turbulent viscosity **Boundary layer friction** Climate (constant in time) forcing f_{ext} **Real orography** Н

Numerical method

Galerkin approximation, asymmetric spherical harmonics wrt equator T12/T21 resolution (spherical harmonics m<13/22) phase space dimension=78/231

 $\psi_r(t)$ s the streamfunction on 300mb surface (from NCEP/NCAR reanalysis)

Barotropic models climate vs observations

300mb NCEP data

Уравнение баротропного вихря на сфере

 $\frac{\partial \Delta \psi}{\partial t} + J(\psi, \Delta \psi + l + kH) = -\alpha \Delta \psi + \mu \Delta^2 \psi + f_{ext}$

0.65

0.6

0.45

Период орбиты (у) и неустойчивая размерность орбит (х) в баротропной модели

Периодические траектории (баротропная модель динамики атмосферы)

Длинная траектория (черный) и 5 наименее неустойчивых орбит Длинная траектория (черный) и 500 орбит системы

Орбиты «визуально» аппроксимируют аттрактор системы, стационарные точки – нет.

Аппроксимация статистик орбитами

Среднее вдоль траектории

Аппроксимируется взвешенным средним

$$\overline{\Phi} = \lim_{T \to \infty} \frac{1}{T} \sum_{i} \Phi(\psi_{i})$$

$$\bigcup_{T \to \infty} \frac{1}{W} \sum_{p} w_{p} \Phi_{p} \quad W = \sum_{p} w_{p}$$

Формула для весов в системах Аносова

$$W_p = 1/\exp(T_p \sum \lambda^+)$$

 Φ_p^- значение функционала Φ для *p-ой* периодической точки $\sum_p \lambda^+$ - сумма положительных показателей Ляпунова орбиты *p*

Важны наименее неустойчивы орбиты!

Ruelle, 1999

Крупномасштабные характеристики воспроизводятся

Psi mean (10++6 m++2/c)

Реконструкция среднего состояние и дисперсии модели с помощью орбит

Psi standard deviation (10++6 m++2/c)

Среднее состояние и дисперсия баротропной модели атмосферы

Реконструкция среднего состояния и дисперсии баротропной модели атмосферы

1. Trajectory spends very few time in the vicinity of several least unstable UPOs. SHOULD NOT USE THEM IN WEIGHTED SUM?

2. Axiom A formula underestimates time spent by the system trajectory in the vicinity of very unstable orbits. USE RELAXED WEIGHT FORMULA?

 $w_p = 1/\exp(T_p \sum \lambda^+) \rightarrow 1/\exp(\alpha T_p \sum \lambda^+) \quad or \quad 1/(\sum \lambda^+)$

pure emperics, mathematicians do not like this idea

Probability of the system to visit δ -neighborhood of UPOs (T12)

Direct calculation (y) vs UPO expansion formula with Axion A weights (x) (log-log scale). (2322 UPOs shown) Direct calculation (y) vs UPO expansion formula with relaxed weights, unphysical orbits removed (x) (log-log scale).

Распределение точек на аттракторе баротропной модели атмосферы (вверху) и его аппроксимация с помощью периодических траекторий (внизу) для нескольких его двумерных проекций

Number of UPOs experiencing bifurcation per 0.01% change of the forcing amplitude

More than 5% of UPOs bifurcate when forcing is changed by 0.3%

- 1. Модели динамики атмосферы имеют (бесконечное?) множество неустойчивых периодических решений.
- 2. Периодические орбиты аппроксимируют статистические характеристики системы с достаточно высокой точностью.
- Теоретические прогнозы (согласно теории гиперболических систем) возможно требуют корректировки.

Прогноз изменений климата

Возможные виды воздействий – изменения солнечной активности, вулканическая активность, антропогенные изменения концентрации парниковых газов и т.д.

Основная проблема моделирования изменений климата — большая неопределенность отклика моделей на изменение парниковых газов

Теория отклика и флуктуационные соотношения

Рассмотрим систему ОДУ.

$$\frac{du}{dt} = F(u) + f.$$

$$u(0) = u_0, \quad F: \mathbb{R}^N \to \mathbb{R}^N \quad f = const(t).$$

Предполагается, что система имеет аттрактор с инвариантной мерой на нем, т.е. можно определить средние значения для статистик системы <*W(u)*>.

$$\langle W(u)\rangle = \int W d\mu.$$

При изменении внешнего воздействия на систему (*бf* не зависит от времени) имеет место

$$\frac{du^1}{dt} = F(u^1) + f + \delta f. \qquad \langle W^1(u^1) \rangle = \int W d\mu^1$$

и возникает задача о вычислении отклика <*W*(*u*)> по отношению к *бf*.

$$\delta \langle W \rangle = \langle W^1(u^1) \rangle - \langle W(u) \rangle = ??$$

если *бf* мало, то можно ожидать, что

$$\delta \langle W \rangle = M \delta f,$$

Флуктуационное соотношение это выражение для *M* в терминах характеристик невозмущенной системы

$$M = \left[\frac{\partial \int W d\mu^1(\delta f)}{\partial \delta f}\right]_{\delta f}$$

... если динамика описывается линейным оператором со стохастическим форсингом:

$$\frac{d\mathbf{x}}{dt} = B\mathbf{x} + \boldsymbol{\zeta}, \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

Тогда ковариационная матрица с запаздыванием $C(t-t_0) = < \mathbf{x}(t)\mathbf{x}(t_0)^{\mathrm{T}} >$

определяется как

$$\frac{dC(t-t_0)}{dt} = BC(t-t_0), \quad C(t-t_0) = \{expB(t-t_0)\}C(t_0,t_0).$$

Если проинтегрировать, то для линейного оператора задачи справедливо

$$B^{-1} = \int_{t_0}^{\infty} C(t - t_0) C(t_0, t_0)^{-1}$$

$$\langle x(t-t_0) \rangle = \exp(B(t-t_0)x_0 = C(t-t_0)C(t_0,t_0)^{-1}x_0)$$

Отклик системы на внешние воздействия и сходимость возмущенного ансамбля к равновесному здесь определяется формой ковариационных матриц с запаздыванием.

В линейном случае правильный прогноз гарантирует правильный оператор В

Следовательно, чтобы правильно воспроизводить чувствительность и потенциальную предсказуемость, приближенная модель должна иметь, как минимум, правильную нормированную ковариацию для какого-то запаздывания или давать точный краткосрочный прогноз с какой-нибудь заблаговременностью. в более общем нелинейном виде

$$\frac{du}{dt} = F(u) + f + \varepsilon \eta(t),$$
$$< \eta(t)(\eta(t'))^{T} \ge B\delta(t - t')$$

ПДФ системы удовлетворяет уравнению Фоккера-Планка (*dµ=pdV*).

$$\frac{\partial \rho}{\partial t} + div((F+f)\rho) = \varepsilon \Delta \rho, \ \rho(0) = \rho_0$$

Для широкого класса систем уравнение имеет единственное стационарное решение – функцию распределения $\rho_{st}: \rho(t) \xrightarrow{}_{t \to \infty} \rho_{st}$ для любого начального ρ_0

ФДТ: с точность до слагаемых первого порядка δf (Dekker, Haake (1974), Risken (1984))

$$\delta f = const$$
$$\delta < W > (t) = M\delta f$$

$$M(t) = \int \langle W(u(t'+\tau))(-\nabla\rho)(t')/\rho \rangle d\tau$$

Если ПДФ системы близка к нормальной

$$\rho \approx \exp(-\Pi) \quad \Pi(u) = (C^{-1}(0)u, u)/2,$$

$$M \approx \int_{0}^{t} \langle W(u(t' + \tau))u(t')^{T} \rangle C^{-1}(0)d\tau$$

Следовательно, чтобы правильно воспроизводить чувствительность, приближенная модель должна иметь, как минимум, правильный интеграл от нормированной ковариационной функции.

Модель атмосферы NCAR GCM CCM0 (state of the art 1980)

9 вертикальных сигма-уровней, независимые переменные psi, div, T, Ps, q, разрешение R15 (496 степеней свободы на каждом уровне), постоянный Январь.

Данные: 4 миллиона дней

Прогноз по формуле

$$M = \int_{0}^{\infty} < (W(u)(t+\tau))u(t)^{T} > C^{-1}(0)d\tau$$

Результаты верифицируются по результатам прямых экспериментов с моделью

поверхности 300мб

Отклик ССМО (слева) и ФДТ $M\delta\!\!f$ (справа) для двух положений воздействия (Psi336).

положение воздействия

С помощью ФДТ удается воспроизвести отклик статистических характеристик модели ССМО на тропические и среднеширотные термические воздействия с высокой точностью.

$$\delta \langle W \rangle = M \delta f.$$

Если известен *M*, то можно решить задачу о нахождении воздействия возбуждающего заданный отклик системы

$$\delta f = M^{-1} \delta < W > .$$

Построение воздействия вызывающего заданный отклик модели ССМО

Отклик модели (справа) на нагревание (вверху) был умножен на обратный оператор отклика. Результат умножения показан на нижнем рисунке.

Атмосфера является

хаотической системой с большим числом степеней свободы (и большим числом положительных показателей Ляпунова). Вследствие этого ее предсказуемость ограничена, а аттрактор имеет сложную фрактальную структуру. Для анализа структуры аттрактора, по видимому, может быть использована теория гиперболических динамических систем, и в частности, аппроксимация периодическими орбитами. Но не всегда.