Численное моделирование сильноточных разрядов и главной стадии разряда молнии

А.Н. Бочаров¹, Е.А. Мареев², Н.А. Попов¹

¹Объединенный институт высоких температур РАН ²Институт прикладной физики РАН

Цели работы

Изучение процессов в искровых импульсных разрядах Изучение процессов в сильноточных импульсных разрядах и дугах Изучение процессов, характеризующих главную стадию разряда молнии

Задачи

Разработка численной модели для анализа характеристик сильноточных разрядов в газах Сравнительный анализ экспериментальных и расчетных характеристик сильноточного разряда в воздухе Оценка характеристик разрядного канала в процессе главной стадии разряда молнии Оценка электромагнитного излучения разряда молнии

К постановке задачи о расчете главной стадии

Начальное состояние

$$\frac{T(r) - T_0}{T_1 - T_0} = 1 - (\frac{r}{r_1})^n \qquad T_0 = 300 \text{K}, \ T_1 = 3000-6000 \text{ K} \qquad P_0 = 10^5 \text{ Ta}$$

Математическая модель сильноточных и молниевых разрядов

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{V}) &= 0 \\ \frac{\partial \rho \mathbf{V}}{\partial t} + \nabla(\rho \mathbf{V} \mathbf{V}) - \nabla \mathbf{\tau} &= -\nabla P \\ \frac{\partial \rho e_0}{\partial t} + \nabla((\rho e_0 + P) \mathbf{V}) + \nabla(\mathbf{V} \mathbf{\tau}) + \nabla \mathbf{q} &= Q_E - Q_r \\ e^{\rho} &= e^{\rho}_{equ}(\rho, T), P = P_{equ}(\rho, T) \\ \tau_{ij} &= -\frac{2}{3}\eta \delta_{ij} \nabla \mathbf{V} + \eta \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i}\right), \mathbf{q} = -\lambda \nabla T \\ \frac{1}{c} \frac{\partial U}{\partial t} + \nabla \left(-\frac{1}{3\kappa} \nabla U\right) &= \frac{\kappa}{c} (4\sigma_{SB}T^4 - cU) \\ U &= \frac{1}{c} \int I d\Omega, Q_r = cS_r \\ Q_E &= \mathbf{J} \mathbf{E}, \mathbf{J} = \sigma \mathbf{E} \end{split}$$

$$\frac{d\Phi}{dx} + L_0 \frac{dI}{dt} + R_0 I = 0$$
$$\frac{dI}{dx} + C_0 \frac{d\Phi}{dt} = 0$$
$$R_0^{-1}(x) = \int_0^{r_1} 2\pi r \sigma(x, r) dr$$

$$C_0 = \frac{2\pi\varepsilon_0}{\ln\left(\frac{H}{r_2}\right)},$$

$$L_0 = \frac{\mu_0}{2\pi} \ln\left(\frac{H}{r_1}\right)$$

Вычислительные аспекты

Газодинамическая часть системы решается стандартно: одношаговый метод Эйлера с аппроксимацией 1го порядка конвективных (AUSM-подобные модели) и диссипативных потоков (центральные разности).

Задача радиационного переноса – двумерная эллиптическая задача – решается набором методов, включая многосеточные процедуры и сильно неявные процедуры LU-разложения.

Интегрирование уравнений длинной линии выполняется на интервале времени, равном «газодинамическому» временному шагу. При этом внутренний, «электродинамический» шаг составляет величину ~*h/c* (*h* – размер сеточной ячейки, *c* – скорость света). Каждый внутренний шаг выполняется по классической схеме Рунге – Кутта 4-го порядка аппроксимации по времени.

Для оценки переносных свойств высокотемпературного воздуха используются литературные данные по сечениям столкновений.

Для оценки термодинамических свойств используются аппроксимации [1].

В основе оценки радиационных свойств плазмы лежат данные о коэффициенте поглощения, также полученные из литературы [2].

1. D'Angola A., Colonna G., Gorse C., Capitelli M. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur. Phys. J. D 2008. V. 46. P. 129. DOI: 10.1140/epjd/ e2007 -00305-4.

2. *Авилова И.В., Биберман Л.М., Воробьев В.С. и др.* Оптические свойства горячего воздуха. М.: Наука. 1970. 320с.

Верификация модели

Задача 1. Релаксация горячего канала, моделирующего разряд молнии на высоте 8 км: плотность – 0.541 кг/м³, температура – 23162 К, давление – 0.47 атм, радиус канала – 1 см

3. Ripoll J-F, Zinn J, Jeffery C A and Colestock P L 2014 On the dynamics of hot air plasmas related to lightning discharges: 1. Gas dynamics *J. Geophys. Res. Atmos.* **119** 9196–9217

Распределения плотности (а) и температуры (б) в различные моменты времени. Сплошные – работа [3], пунктир – данная работа.

Верификация модели

Задача 2. Разряд электрод – плоскость в длинном промежутке

4. Robledo-Martinez A, Sobral H and Ruiz-Meza A 2008 Time-resolved diagnostic of an impulse discharge in variable pressure air *J. Phys. D: Appl. Phys.* **41** 175207 (9pp)

 $z = t/t_1, z_1 = t_2/t_1,$ $z_2=t_3/t_1, t_1 = 1.1 \ \mu s,$ $t_2 = 6 \ \mu s, t_3 = 8 \ \mu s,$ $l_0 = 1740 \ A$

Изменение радиуса канала во времени. Символы – эксперимент [4], сплошные кривые – данная работа

Температура (слева) и электронная концентрация (справа) на оси разряда. Символы – эксперимент [4], сплошные кривые – данная работа

Верификация модели Задача 3. Моделирование сильноточных разрядов [5,6]

Figure 1. Diagnostics setup with two high speed cameras (HSC) and a patterned background

Figure 2. Picture of the 100 kA peak arc at 14 μ s after ignition (image resolution: 0.67 mm/pixel; exposure time: 300 ns).

 $I(t) = I_0 (t/\tau)^n \exp((1 - t/\tau) \cdot n)$

5. Sousa Martins R, Zaepffel C, Chemartin L, Lalande Ph and Soufiani A 2016 Characterization of a high current pulsed arc using optical emission spectroscopy J. Phys. D: Appl. Phys. 49 415205

6. Sousa Martins R, Zaepffel C, Chemartin L, Lalande Ph and Lago F 2019 Characterization of high-current pulsed arcs ranging from 100–250 kA peak J. Phys. D: Appl. Phys. **52** 185203

Задача З. Сильноточный разряд 10 – 100 кА [5]

Температура (слева) и электронная концентрация (справа) для токов *I* = 10-100 кА. Символы — [5], сплошные — данная работа.

Профили электропроводности для / = 100 кА – 13 µs. Символы – [5], сплошные – данная работа.

Радиус токового канала во времени. Символы — [5], сплошные — данная работа.

Задача З. Сильноточный разряд 10 – 100 кА [5] (пинч-эффект)

Давление (слева), температура (справа), для разряда 100 kA/13µs. Сплошные – с учетом пинч-эффекта, пунктир – без учета пинч-эффекта.

Задача З. Сильноточный разряд 100 кА/13 µs [6]

Задача З. Сильноточный разряд 150 кА/25 µs [6]

Задача З. Сильноточный разряд 200 кА/20 µs [6]

Задача З. Сильноточный разряд 250 кА/24 µs [6]

К постановке задачи о расчете главной стадии

Начальное состояние

$$\frac{T(r) - T_0}{T_1 - T_0} = 1 - (\frac{r}{r_1})^2 \qquad T_0 = 300 \text{K}, \ T_1 = 3000 - 6000 \text{ K} \qquad P_0 = 10^5 \text{Па}$$

Главная стадия молнии

$$T_0$$
 = 300 К, T_1 = 6000 К, d = 1 см, $H_3 \sim 100$ м

Электрический потенциал (синие) и электрическое поле (красные), \varPhi_0 = 8 MB

Электрический потенциал (синие) и электрическое поле (красные), $\Phi_0 = 16 \text{ MB}$

Температура (красные), электрическая мощность (зеленые), мощность радиационных потерь (синие), $\Phi_0 = 8 \text{ MB}$

Температура (красные), электрическая мощность (зеленые), мощность радиационных потерь (синие), Φ_0 = 16 MB

Скорость движения головной части канала молнии в зависимости от потенциала облака Φ_0 . Цифры у кривых – значения потенциала (МВ)

d = 20mm, T_0 =300K , $H_3 \sim 400$ m, 0 – T_1 =6000K, 1 – T_1 =5400K, 2 – T_1 =4800K, 3 – T_1 =4200K, 4 – T_1 =3900K

d = 20мм, T₀=300К , H₃ ~ 400 м, T₁=4200К Цифры – время в микросекундах

d = 20мм, T₀=300К , H₃ ~ 400 м, T₁=4200К Цифры – время в микросекундах

Оценка излучения канала молнии в дальней зоне

Оценка амплитуды поля E_z на расстоянии X = 10 км от разряда: Ez ~ 80 B/м (Вариант 1) Ez ~ 95 B/м (Вариант 2)

Заключение

Разработана 2D модель сильноточного разряда в воздухе и 2D модель главной стадии разряда молнии.

Сравнение расчетных и экспериментальных пространственно-временных характеристик сильноточного разряда в воздухе показало хорошее количественное согласие практически по всем характеристикам в шиолком диапазоне токов разряда. Это позволяет сделать вывод об адекватности разработанной модели для анализа сильноточных разрядов в лабораторных условиях. Кроме того, есть основания считать разработанную модель вполне пригодной для описания характеристик разряда молнии.

Заключение

Характеристики большей части канала молнии (от земли до фронта волны ионизации) определяются балансом мощности тепловыделения от протекающего тока и радиационным охлаждением канала. Расчеты показывают, что эта часть канала всегда остывает со временем, причем это является, главным образом, следствием радиационного охлаждения, а не следствием газодинамического расширения канала. Температура канала молнии у земли остается достаточно высокой, выше 15 kK, т.е. газ является практически полностью ионизованным.

Скорость распространения канала от земли к облаку непосредственно зависит от разности потенциалов между облаком и землей. Чем выше разность потенциалов, тем (в среднем) выше скорость движения. Более высокие значения потенциала облака обеспечивают более высокие электрические поля в головной части разряда, т. е. более быстрый нагрев и «заземление» зоны фронта волны ионизации.

Оценка излучения от разряда молнии выполнена в приближении дальней зоны. На больших расстояниях от зоны разряда электрическое поле определяется не только скоростью движения фронта, но и снижением полного тока в канале.