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Dynamic and quasi-static tides

® |n principle, there are two contributions due
to tidal interactions, which can be easily
separated:

® 1) quasi-static tides. The energy and angular

® momentum are transferred between the
orbit and the star on a time characteristic
scale determined by orbital motion by viscous
forces. The main uncertainty - a value of “tidal
Q" defined as the ratio of energy stored in
tidal bulge to the amount of energy dissipated
per forcing period.



® 2) Dynamic tides. During the periastron
passage oscillations are excited at
frequencies corresponding to a star’'s normal

® mode frequencies due to resonant
interactions. These are: fundamental

modes with frequencies w ~Q.=VGM/R_2,

inertial, and gravity waves with w << Q. in case

of stably stratified stars. In certrain regimes the
outcome of dynamic tides does not depend on
viscosity of stellar gas. However, to justify
these regimes some non-linear mechanisms of

dissipation of tidal energy must be invoked.
o



A simple model problem
Let us consider the standard linear forced oscillator equation
P+ i 4 wle = f(1),

where we assume that the dissipation rate ~ is much smaller that the eigen

frequency w,. We also assume that wy = B:I & wy, but, wyp > .

In general there are two contributions to the solution corresponding to 'quasi-
static and dynamic tides’, respectively. The former describes a part of the
solution evolving with characteristic time ~ w}l, while the latter describes the
part evolving on the timescale w !,

In order to find the first part we look for the solution in the form r =

?13 f + xq, and easily find that x; ~ —l{: We have, accordingly.
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The last equality shows that we have successfully modelled the well-known ’tidal
lag” associated with quasi-static tides.

To find the second part we do Fourier transform of the forcing term f =
& [dwf(w)e™® and obtain the formal solution

1 Fle)e
o(t) = o2 /dw (w2 — w? +iwy)

When considering times > wf_l only the poles in the integral matter and we
approximately have

x(t) =~ —2mi Z f(wpm )™t
+

where wy = £w, + i7/2. Clearly, we have modelled excitation of free oscilla-
tions by the forcing term. The same effect takes place when dynamic tides are
considered.



10000

Va (cm/s)
=




Forced oscillations of a star

When studying linear oscillations of a star it is conve-
nient to make the Fourier transform £(t) — &(w).

(Note that when the forcing is nearly periodic, one should use Fouries series!)

Let us consider a uniformly rotating star. In the rotating frame our problem
can be formulated as

where B¢ and C are self-adjoint. Moreover, in certain
cases it is possible to assume that C is non negative def-
inite, 1. e. < £|Cyp >> 0 for any £ and .



Let me consider square root of C, CY2 defined by
condition: C = CY/2C1/2

Also. let me introduce a six dimensional vector 7 with
components:

Zl — wg: ZQ — Cl/Zg

Then. it 1s easy to see that the problem can be re-
formulated in a way associated with a new self adjoint
operator ‘H

wZ =HZ+ S,
where ‘H has a matrix structure
B Cl/?

H = cl/2 )

and the source six dimensional vector S has the compo-
nents

Sl — S(w), SQ =0



The solution is expressed in terms of eigen vectors of
/[ = Z Oc‘;fZ k,
k

where /. satisty

wp A" =HI".
7% are orthogonal in the sense of the inner product

< Z_}le}g > = wkwl(&J&) T (§L|C&>

< 7Z|S >
Ni(o + 10, — oy)

m,rhere j\r —2d Z;le'[1 > if‘ﬂ J[h(% 110T°111.



The displacement vector £ 1s obtained from its Fourier transform
&, by integration over o and summation over m
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This expression can be simplified in the limit f — o at which only
the poles in the expression in the braces contribute significantly to
the integral over . In this limit we may. therefore, write

Ry .
£=2mi ) (”;: g ikl gimig 4 .:..:.) . (28)
i,k
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The same formalism is working in case when the source term is (quasi) periodic. The
only difference is that we should work with Fourier series instead of Fourier transform.
The basic relations in this case are very simple in the case of a regular dense eigen
spectrum (e.g. internal gravity waves) and the so-called 'moderately large viscosity',
when the ratio of an effective dissipation rate to the difference between two neighbouring
eigen frequencies, K, is larger than one.

> 1
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In this case the energy and angular momentum transfer rates from the orbit to
the modes, and then to a star does not depend on viscosity
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An example of application of this formalism to the system WASP-12b
containing a Hot Jupiter (lvanov, Papaloizou, Chernov, 2017).



The central issue of the whole theory is, however, how to provide kK > 1? One can see,
that, the linear mechanism such as e.g. convective/radiative viscosity cannot do the job
for stars on the main sequence. Therefore, it's natural to invoke non-linear mechanisms.

In what follows | am going to consider only g-modes in MS stars. The central quantity,

which governs these waves is the Brunt—Vaisala frequency N defined according to the
rule

1 dlnpg B d In pg
['1o dr dr

It may be shown that N* = Ads/dr, where s is specific entropy and A > 0.

N= = qo

In particular, eigen frequencies of g-modes in WKBJ approximation obey

VAT
mn+(14+0D/24+q/(42+q))) + Ap(wy)

) =

where n is the mode's order, | and A are 2 and 6 for a non-rotating star,

f e dr
[ = —N
o F

and the other terms provide some corrections.
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Figure 8. Same as Fig. 7. but for the models 2a. 2b, 2¢ and 2d shown as

Figure 6. Radial profiles of stellar density p (black solid line) and square of
black solid, red dashed, green dotted and blue dot-dashed lines, respectively.

the Brunt-Viisild frequency N2 (red dashed line), both in the natural units
defined in § 2, for model 1a.

Typical distributions of BV frequency and density (in natural units): left
panel - a solar model, right panel — models of stars with masses equal to 2
solar masses.



Let us first consider a star of solar type (with radiative interior). In such stars g-modes
can propagate down to the centre, where they can 'break’. The condition for wave
Breaking (which is typically justified by some numerical arguments) is that the absolute
value of the gradient of Eulerian perturbation of specific entropy

J,5 s larger than its background value ds/dr and, accordinlgy, perturbation of

BV frequency is formally larger than its background value.
Taking into accout that Largangian perturation of entropy As is zero for adiabatic

perturbations, and that Ay = s’ -I— r:fs. Ef

this condition can be translated to the condition

_;_—.f' dr =F —
| dr 5 ds > |~ |

and the expression on .h.s. can be evaluated when E; is known.

Accnimina that N = "-"xccmmf- we obtain the condition
- - . 1/2
q . . 320 Pcentre i 03

— {.-'r“izn Ccrit,centre = orb
l1+gq where V2 I'2AY . O

and € are the so-called overlap integrals. They are functions of the orbital
frequency and a stellar model. q is mass ratio of the stars.




But, more massive stars have convective cores, the wave breaking
mechanism doesn't work efficiently, and the coefficient C__  turns to be too large.

What to do? One way out of this trouble is to consider effects near the interface
between outer convective envelope and the intermediate radiative zone (lvanov,
Chernov, Barker, 2022). For that we consider a model probem near the interface
radius, r.

We assume the vertical velocity to be zero at some distances -z_and z_in the neutral and

radiative zones, respectively. This formulates an eigen problem, which is solved
iteratively, for harmonics of first and second order, respectively.

* We also assume the Boussinesq approximation, the planar geometry and that the
square of Brunt-Vaisala frequency decreases linearly with the distance to the

interface radius.

U+(U-VVU = —VP4be,, V-U=0, bt(UV)b=—zU">.
(7

The set of equations is solved iteratively, in the linear approximation, and in
the next order, where the linear solution is used as source. We then check,
under which condition the amplitude of the second order perturbations is
the same is an amplitude of the first order perturbations. It is assumed

that when this happens, a non-linear instability sets in (but, it has not been
checked!!!).



The second order solution is looked for as a decomposition over the free pulsations, in
full analogy with the tidal problem, and it turns out that there is a resonance for a mode,
which has its eigen frequency twice a value of the primary mode. However, this
resonance is not exact, different factors (albeit small ones) limit the amplitude of the
secondary mode. Taking into account these factor allows us to formulate another
criterion of a possible strongly non-linear behaviour of the system in the same manner
as the previous one. Namely, when the mass rato g is such that g/(1+q) > Ccmc,

we assume that the system becomes non-linear and tides are possibly damped.

d; +Aja; = — 21 (52)
where

S; = /cﬁ;.‘j’d:ifdz. N; = N;; = /z@ﬁ;éjdrdz. (53)

Remembering that S o< ¢**“7*, solutions to (52) are
2
Wy ‘51' 2iwpt
4 = 53— —€ 7 (54)
k2 (-'lm'p — W ) N

)
where we remember that A; = w7.



Im(w;) (damping rate)
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Figure 9. Various criteria for transition to nonlinearity C'cr;; are shown for
a solar mass model as a function of orbital period in days. The black solid
curve corresponds to Ceenere using the *standard’ expression (22) for wave
breaking in radiative cores, the red dashed one corresponds to Clepir ¢ in
(71), the green dotted and blue dot-dashed curves are given by Cf]f:ff in
eq. (75), where in the former we set &« = 0 and in the latter & = 1.
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Numerical experiments — as far as | am aware of they all have been done for models
corresponding to solar-like stars, wave breaking in the centre and in Boussinesq
approximation (sometimes, in cylindrical geometry as well).
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3D simulations (Barker, 2011). The left panels — forcing am!plitude is weak and the
waves evolve in the linear regime, right panels — forcing is strong enough for wave

breakina to occur.



The formation of a critical layer in case of wave breaking

Not only energy, but also angular momentum is transferred by waves. When they break
a rotating mean flow is formed. When the angular frequency of this flow is larger
when the wave pattern speed w/m, waves are absorbed near the boundary of the flow.
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This is because close to the layer wavelength tends
to zero as described in 1D by Taylor-Goldstein
equation.
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Figure 11. w,, ug (radial and axmuthal velocities) and & (buoyancy) for o simulation with intermediate-amplitude forcing L = 3 x 10-5 with frequency
Figure & ur and vy {radial and azimuthal velocities) and b (buoyancy perturbation) for a simulation with low-amplitude forcing with frequency o e = 0.100 (comrespoading to the black curve in Fig. 9). The diffusion coefficients are v = 107° and x = 5 107°.
The diffusion coefficients are + = 10-° and « = 5 100,

Dynamical picture (Guo,
Oqilvie, Barker, 2023)

Figure 16. wr, ug (radial and aximuthal velocities) and & (buoyancy ) for a simulation with high-amplitude forcing (L) = ]D"’}wilh frequency w =(0.11. The
diffusion coefficients are v = 107° andw =5 107%,




Conclusions

For slowly rotating MS stars the linear theory of dynamic tides associated with g-modes
is reasonably well understood. For certrain astronomical systems (but, not all of them!),
when tides are assumed to operate in the regime of moderately large viscosity, the theory
gives a good agreement with observations.

But, there are certain issues with so-called inertial waves — another branch of
perturbations of potential importance. However, a lot of work has already been done
to clarify the situation.

Non-linear effects are imporant to justify the regime of moderately large viscosity. They
can also, in principle, explain a disargeement between the theory and observations in
certain cases. So far, only some simple estimates or model numerical calculations have
been done in this field. Clearly, we need much more work to be done in this direction.
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