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Tidal interactions and waves in stars 



In principle, there are  two contributions due 
to tidal interactions, which can be easily 
separated:

1) quasi-static tides. The energy and angular
momentum are  transferred between the 
orbit and the star on a time characteristic 
scale determined by orbital motion by viscous 
forces. The main uncertainty - a value of “tidal 
Q” defined as the ratio of energy stored in 
tidal bulge to the amount of energy dissipated 
per forcing period.

Dynamic and quasi-static tides



2) Dynamic tides. During the periastron 
passage oscillations are excited at 
frequencies corresponding to a star’s normal

mode frequencies due to resonant 
interactions. These are: fundamental

modes with frequencies ω ~Ω*=√GM/R
*
3

 
, 

inertial, and gravity waves with ω << Ω*  in case 
of stably stratified stars. In certrain regimes the 
outcome of dynamic tides does not depend on 
viscosity of stellar gas. However, to justify 
these regimes some non-linear mechanisms of 
dissipation of tidal energy must be invoked.
   







Let us consider a uniformly rotating star. In the rotating frame our problem 
can be formulated as

(Note that when the forcing is nearly periodic, one should use Fouries series!)









The same formalism is working in case when the source term is (quasi) periodic. The 
only difference is that we should work with Fourier series instead of Fourier transform. 
The basic relations in this case are very simple in the case of a regular dense eigen 
spectrum (e.g. internal gravity waves) and the so-called 'moderately large viscosity', 
when the ratio of an effective dissipation rate to the difference between two neighbouring
eigen frequencies, κ, is larger than one.  

> 1

In this case the energy and angular momentum transfer rates from the orbit to 
the modes, and then to a star does not depend on viscosity 



An example of application of this formalism to the system WASP-12b 
containing a Hot Jupiter (Ivanov, Papaloizou, Chernov, 2017). 



The central issue of the whole theory is, however, how to provide κ > 1? One can see, 
that, the linear mechanism such as e.g. convective/radiative viscosity cannot do the job 
for stars on the main sequence. Therefore, it's natural to invoke non-linear mechanisms.

In what follows I am going to consider only g-modes in MS stars. The central quantity,
which governs these waves is  the Brunt–Väisälä frequency N defined according to the 
rule
 
 

In particular, eigen frequencies of g-modes in WKBJ approximation obey  

where n is the mode's order, l and Λ are 2 and 6 for a non-rotating star, 
  

and the other terms provide some corrections.

It may be shown that N2 = Ads/dr, where s is specific entropy and A > 0. 



Typical distributions of BV frequency and density (in natural units): left 
panel - a solar model, right panel – models of stars with masses equal to 2 
solar masses.



Let us first consider a star of solar type (with radiative interior). In such stars g-modes 
can propagate down to the centre,  where they can 'break'. The condition for wave 
Breaking (which is typically justified by some numerical arguments) is that the absolute
value of the gradient of Eulerian perturbation of specific entropy 

is larger than its background value 

Taking into accout that Largangian perturation of entropy Δs is zero for adiabatic 
perturbations, and that 

this condition can be translated to the condition  

and the expression on l.h.s. can be evaluated when  is known.

Assuming that we obtain the condition

where
and   are the so-called overlap integrals. They are functions of the orbital 

frequency and a stellar model. q is mass ratio of the stars.

and, accordinlgy, perturbation of 

BV frequency is formally larger than its background value.



But, more massive stars have convective cores, the wave breaking
mechanism doesn't work efficiently, and the coefficient C

centre 
 turns to be too large. 

What to do? One way out of this trouble is to consider effects near the interface 
between outer convective envelope and the intermediate radiative zone (Ivanov, 
Chernov, Barker, 2022). For that we consider a model probem near the interface 
radius, r

c 
.

We assume the vertical velocity to be zero at some distances -z
c
 and z

r
 in the neutral and 

radiative zones, respectively. This formulates an eigen problem, which is solved 
iteratively, for harmonics of first and second order, respectively.
   We also assume the Boussinesq approximation, the planar geometry and that the 

square of Brunt-Vaisala frequency decreases linearly with the distance to the 
interface radius. 

   
 

The set of equations is solved iteratively, in the linear approximation, and in 
the next order, where the linear solution is used as source. We then check,
under which condition the amplitude of the second order perturbations is
the same is an amplitude of the first order perturbations. It is assumed
that when this happens, a non-linear instability sets in (but, it has not been
checked!!!).   



The second order solution is looked for as a decomposition over the free pulsations, in 
full analogy with the tidal problem, and it turns out that there is a resonance for a mode, 
which has its eigen frequency twice a value of the primary mode. However, this 
resonance is not exact, different factors  (albeit small ones) limit the amplitude of the 
secondary mode.  Taking into account these factor allows us to formulate another
criterion of a possible strongly non-linear behaviour of the system in the same manner
as the previous one. Namely, when the mass rato q is such that q/(1+q) > C

crit,c
, 

we assume that the system becomes non-linear and tides are possibly damped. 
   









Numerical experiments – as far as I am  aware of they all have been done for models 
corresponding to solar-like stars, wave breaking in the centre and in Boussinesq 
approximation (sometimes, in cylindrical geometry as well).  

3D simulations (Barker, 2011). The left panels – forcing amplitude is weak and the 
waves evolve in the linear regime, right panels – forcing is strong enough for wave 
breaking to occur.
 



The formation of a critical layer in case of wave breaking

Not only energy, but also angular momentum is transferred by waves.  When they break
a rotating mean flow is formed. When the angular frequency of this flow is larger 
when the wave pattern speed ω/m, waves are absorbed near the boundary of the flow.

This is because close to the layer wavelength tends
to zero as described in 1D by Taylor-Goldstein 
equation.



Dynamical picture (Guo, 
Ogilvie, Barker, 2023)



Conclusions

For slowly rotating MS stars the linear theory of dynamic tides associated  with g-modes 
is reasonably well understood. For certrain astronomical systems (but, not all of them!),
when tides are assumed to operate in the regime of moderately large viscosity, the theory
gives a good agreement with observations.

But, there are certain issues with so-called inertial waves – another branch of 
perturbations of potential importance. However, a lot of work has already been done
to clarify the situation.

Non-linear effects are imporant to justify the regime of moderately large viscosity. They
can also, in principle, explain a disargeement between the theory and observations in
certain cases. So far, only some simple estimates or model numerical calculations have 
been done in this field. Clearly,  we need much more work to be done in this direction.    
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