Морские волны-убийцы: наблюдения, физика и математика

Алексей Викторович Слюняев

сектор моделирования экстремальных волновых явлений в океане, Институт прикладной физики РАН, Нижний Новгород

Высшая школа экономики, Нижний Новгород

Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, Владивосток

Slunyaev@ipfran.ru

🔊 RSS-ленты Вход \rightarrow Русский English Выпуски Авторы РАСЅ Подписчикам Для авторов

Получить статью → Поиск →

Статьи, принятые к публикации

Обзоры актуальных проблем

Морские волны-убийцы: наблюдения, физика и математика

А.В. Слюняев^{а,б}, Д.Е. Пелиновский^{б,в}, Е.Н. Пелиновский^{а,б}

^аНациональный исследовательский университет Высшая школа экономики, Нижегородский филиал, ул. Б. Печерская 25/12, Нижний Новгород, 603155, Российская Федерация

^бИнститут прикладной физики РАН, Москва, Российская Федерация

^BMcMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4L8, Canada

Волны-убийцы — неожиданно возникающие аномально высокие волны на морской поверхности — привлекли внимание исследователей от океанографов до математиков на рубеже XX—XXI вв. В настоящем обзоре обсуждаются результаты исследования этого явления: физические механизмы возникновения аномально высоких волн и соответствующие математические модели, имеющиеся натурные данные, результаты прямого численного моделирования и лабораторных экспериментов, новые подходы к моделированию и прогнозу экстремальных морских волн.

Ключевые слова: волны-убийцы, морские ветровые волны, нелинейные волны PACS: 05.45.-a, 92.10.Hm (BCe) DOI: 10.3367/UFNr.2021.08.039038 Цитата: Слюняев А.В. Пелиновский Д.Е. Пелиновский Е.Н. "Морские волны-убийцы: наблюдения, физика и математика" УФН, принята к публикации Поступила: 24 июля 2021, доработана: 6 августа 2021, одобрена в печать: 7 августа 2021

English citation: Slunyaev A V, Pelinovsky D E, Pelinovsky E N "Rogue waves in the sea: observations_physics and mathematics" Phys. Usp., accepted; DOI: 10.3367/UFNe.2021.08.039038

Похожие статьи (20)

Статьи, принятые к публикации

- 1. Введение
- 2. Данные наблюдений и регистраций волн-убийцюдения, физика и математика
- 3. Физические механизмы и модели возникновения морских волн-убийц
 - гЗи1ниБазовые уравнения гидродинамики одский филиал, ул. Б. Печерская 25/12, Нижний Новгород, 603155, Российская Федерация
 - 3.2. Геометрическая и дисперсионная фокусировка
 - 3.3. Нелинейные взаимодействия волн. Модуляционная неустойчивость
- 3.4. Обобщения параметра модуляционной неустойчивости
 - - 3.5. Когерентные волновые структуры и их взаимодействия
 - 3.6. Нелинейная динамика волн при изменяющихся условиях
- 3.7. Нелинейная динамика захваченных волн

4. Математические модели волн-убийц на фоне модулированных волн

- 4.1. Периодические решения НУШ
 - 4.2. Волны-убийцы на фоне волн постоянной амплитуды (бризеры)
 - 4.3. Волны-убийцы на фоне модулированных волн
- - 4.4. Более сложные структуры волн-убийц

5. Прямое моделирование морских волн

- 5.1. Традиционный подход
- 5.2. Быстрые модели для описания динамики поверхностных волн
- 5.3. Стохастическое численное моделирование морских волн
- 5.4. Характерный портрет волны-убийцы
- 5.5. Сильно нелинейные солитоны и бризеры на поверхности воды
- 5.6. Реконструкция морских волн-убийц

6. Заключение

Norwegian Petroleum Directorate's regulations

Нормы безопасности конструкций шельфовых платформ (Norwegian Petroleum Directorate's regulations, Det Norske Veritas):

Ultimate Limit State: 1 раз в 100 лет – заплеск без нарушения работоспособности и без травмирования персонала;

Accidental Limit State : **1 раз в 10 000 лет** – без разрушения платформы, возможность эвакуации, без существенного загрязнения

для сравнения Останкинская башня - крыша: 385 м, шпиль: 540 м

Волны как случайная суперпозиция гармоник 5

$$\eta(\vec{x},t) = \sum_{n} a_{n} \cos\left(\omega_{n}t - \vec{k}_{n}\vec{x} + \varphi_{n}\right)$$

Longuet-Higgins (1952): волны представимы суперпозицией синусоид со случайными фазами.

Предположение статистической независимости гармоник *n* (линейный предел), случайные амплитуды *a_n* подчиняются заданному распределению, фазы *φ_n* распределены равномерно и независимы. Бесконечно большой ансамбль (*n*→∞).

Тогда в силу Центральной предельной теоремы имеется Гауссово (нормальное) распределение для смещения поверхности в точке $\eta(t)$

Волны как случайная суперпозиция гармоник ⁶

$$\eta(\vec{x},t) = \sum_{n} a_{n} \cos\left(\omega_{n}t - \vec{k}_{n}\vec{x} + \varphi_{n}\right)$$

Longuet-Higgins (1952): волны представимы суперпозицией синусоид со случайными фазами.

Предположение статистической независимости гармоник *n* (линейный предел), случайные амплитуды *a_n* подчиняются заданному распределению, фазы *φ_n* распределены равномерно и независимы. Бесконечно большой ансамбль (*n*→∞).

Тогда в силу Центральной предельной теоремы имеется Гауссово (нормальное) распределение для смещения поверхности в точке $\eta(t)$

$$f(\eta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(\eta - \overline{\eta})^2}{2\sigma^2}\right]$$

Анализ временных последовательностей смещения поверхности в точке

> Основная характеристика интенсивности волны – ее высота *Н*

[Fig: Holthuijsen, 2007]

Волны как случайная суперпозиция гармоник⁷

В предположении узкого спектра волн применима запись

$$\eta_n(\vec{x},t) = |B_n| \cos\left(\omega_n t - \vec{k}_n \vec{x} + \varphi_n\right)$$

где B_n и ϕ_n медленные функции.

Тогда плотность вероятности для высоты H = 2 |B| есть распределение Рэлея

[Fig: Holthuijsen, 2007]

$$P(H) = \exp\left[-\frac{H^2}{8\sigma^2}\right]$$

Значительная высота волн $H_{s} \approx 4\sigma$, и тогда

$$P(H) \approx \exp\left[-2\frac{H^2}{H_s^2}\right]$$

Волны как случайная суперпозиция гармоник ⁸

Нормы безопасности шельфовых платформ (Norwegian Petroleum Directorate's regulations):

ULS: 1 раз в 100 лет – заплеск без нарушения работоспособности и без травмирования персонала;

ALS: 1 раз в 10 000 лет – без разрушения платформы, возможность эвакуации, без существенного загрязнения

Прямые измерения морских волн

1806 регистрация приливных волн (Brest, France)

1950 разовые инструментальные измерения волн с кораблей

1960 регулярные инструментальные измерения волн

1870 – запись наблюдательных данных с кораблей (Voluntary Observing Ship, VOS Program)

FLIP = FLoating Instrument Platform (USA)

1 млрд. волн ~ измерение более 300 лет

Портрет «волны-убийцы»

Разные формы волн-убийц, зарегистрированных буем на западном шельфе Индии: высокий гребень (1), знакопеременная волна (2),

- «дырка в море» (3),
- интенсивная группа (4)

Усредненный профиль волн-убийц (черная линия) и 1% «нормальных» волн с максимальной амплитудой гребня (красная линия) по результатам [Christou & Ewans, 2014]

Формы волн-убийц с высотой более 2*H*_s (синий), высотой гребня более 1.25*H*_s (красный), -⁰ а также 1% самых высоких «нормальных» волн (зеленый) по результатам [Cattrell et al., 2018]

Редкие экстремальные события

соответствует вероятности не более

2·10⁻²²: **~1 раз в 10¹⁵ лет (???!!!)**.

Раз в **~10 тыс. лет**

Каталоги «волн-убийц»

Прямые измерения морских волн

Кажется, что инструментальных данных много, но их недостаточно:

- недостоверные данные (ошибки, погрешность, низкое разрешение, т.п.)
- статистическая неоднородность данных, sampling variability

Возможность экстраполяции существующих теорий на более редкие события сомнительна из-за ярких примеров «почти невозможных» событий.

«Аномальная» волна та, что не описывается «нормальной» теорией

Моделирование ветрового волнения

Уравнение баланса спектральной плотности волнового действия *N* = *E*/*w* (уравнение Хассельманна)

$$\frac{\partial N(\vec{k},\vec{r},t)}{\partial t} + \nabla(\vec{c}_{gr}N) = S_{in}(N) + S_{diss}(N) + S_{nl}(N)$$

Изменение распределения энергии в физическим пространстве и в пространстве волновых векторов

Перенос энергии в физическом пространстве с групповой скоростью

Накачка энергии (ветер)

$$u(\vec{x},t) = \sum_{n} a_n \cos\left(\omega_n t - \vec{k}_n \vec{x} + \varphi_n\right)$$

S_{nl} - единственное слагаемое в правой части уравнения, которое может быть рассчитано из первых принципов

Потери энергии (обрушения, молекулярная вязкость)

Нелинейные взаимодействия волн

Кинетическое моделирование оперирует предполагает,

что фазы волн $arphi_n$ — независимые случайные величины.

Далее будем считать, что море глубокое, волны однородны по пространству, накачкой и потерями можно пренебречь.

Аналогия колебательной системы

Аналогия колебательной системы

Нелинейность приводит к зависимости частоты от амплитуды и изменению формы волновых компонент ~ несимметричные ангармонические осцилляторы

В Фурье-представлении такая волна дополняется кратными гармониками

Аналогия колебательной системы

Волновые компоненты не вполне независимы. Из-за разности частот линейные резонансы не реализуются. Но возможны нелинейные резонансы, когда комбинационные частоты совпадают с собственными частотами: $\omega_1 \pm \omega_2 \pm ... \pm \omega_{N-1} = \omega_N$. **N** волн взаимодействует в результате нелинейного процесса порядка *N*-1. При этом используются частоты малоамплитудного предела. Волны могут быть сведены к системе осцилляторов как функций времени (частоты), так и координат (волновые векторы), потому резонансное условие на частоты дополняется аналогичным условием в **k**-пространстве.

Dynamical spectral theory

Hamiltonian theory

Primitive equations for potential movement of ideal fluid (Zakharov, 1968)

$$\frac{\partial \eta}{\partial t} = \frac{\delta H}{\delta \Phi} \qquad \frac{\partial \Phi}{\partial t} = -\frac{\delta H}{\delta \eta} \qquad \Phi = \varphi(\mathbf{x}, z = \eta, t)$$
$$H = T + U \qquad T = \frac{1}{2} \int d\mathbf{x} \int_{-h}^{\eta} (\nabla \varphi)^2 dz \qquad U = \frac{g}{2} \int \eta^2 d\mathbf{x}$$

Canonical variables for the spectral representation in space

$$\eta_{\mathbf{k}} = \sqrt{\frac{\omega_{\mathbf{k}}}{2g}} \left(a_{\mathbf{k}} + a_{\mathbf{k}}^{*} \right) \qquad \Phi_{\mathbf{k}} = -i \sqrt{\frac{g}{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}} - a_{\mathbf{k}}^{*} \right) \qquad a_{\mathbf{k}} = \frac{1}{2\pi} \int a(\mathbf{x}, t) e^{-i\mathbf{k}\mathbf{x}} d\mathbf{x}$$

The spectral theory for the full system of equations in terms of variables $a_{\mathbf{k}} = a(\mathbf{k},t)$ for the dispersion relation $\omega_{\mathbf{k}} = \omega(\mathbf{k})$

The Hamiltonian has a complicated form $H = H_0 + H_{int}$, with $H_0 = \int \omega_k a_k a_k^* dk$ describing linear independent waves. The part responsible for the nonlinear wave interactions may be expanded into the series of different orders of nonlinear interaction assuming that the wave steepness $\mathcal{E} = O(|\mathbf{k}|a)$ is a small parameter, $\mathcal{E} << 1$.

Dynamical spectral theory

Hamiltonian weakly nonlinear Zakharov's equation

Non-resonant terms are eliminated with the help of the canonical transformation of variables $((\eta, \Phi) \rightarrow a(\mathbf{k}, t) \rightarrow b(\mathbf{k}, t))$.

Higher than 4-wave resonances are not resolved (wave slopes should be mild).

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \omega_{\mathbf{k}}b_{\mathbf{k}} + \int T_{\mathbf{k}\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}}b_{\mathbf{k}_{1}}^{*}b_{\mathbf{k}_{2}}b_{\mathbf{k}_{3}}\delta(\mathbf{k} + \mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3})d\mathbf{k}_{1}d\mathbf{k}_{2}d\mathbf{k}_{3}$$

A 6^{*}-fold integral from the RHS and a horrible nonlinear coefficient T_{0123} .

- Inner symmetries of the nonlinear coefficient T₀₁₂₃;
- modifications of the expression for T₀₁₂₃ which retain it close to the original one in the vicinity of resonant curves and
- new canonical variables $b(\mathbf{k}, t) \rightarrow c(\mathbf{k}, t)$

are examined with the purpose to simplify the expression (A.I. Dyachenko, D.I. Kachulin & youngers) and hence to increase the performance of simulations.

Currently employed by engineers 2-order statistical models assume that the nonlinear part in the equation is absent ($T_{0123} = 0$), but take into account the quadratic terms in relation between $a(\mathbf{k}, t)$ and $b(\mathbf{k}, t)$.

Kinetic theory

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \omega_{\mathbf{k}}b_{\mathbf{k}} + \int T_{\mathbf{k}\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}}b_{\mathbf{k}_{1}}^{*}b_{\mathbf{k}_{2}}b_{\mathbf{k}_{3}}\delta(\mathbf{k} + \mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3})d\mathbf{k}_{1}d\mathbf{k}_{2}d\mathbf{k}_{3}$$
$$N(\mathbf{k}, \mathbf{x}, t) = \frac{E(\mathbf{k}, \mathbf{x}, t)}{\omega(\mathbf{k})} \qquad \langle bb_{1}^{*} \rangle = N(\mathbf{k})\delta(\mathbf{k} - \mathbf{k}_{1})$$

Here $N(\mathbf{k}, \mathbf{x}, t)$ is the wave action. The angle brackets <•> are the ensemble averaging.

$$\frac{\partial N}{\partial t} + \nabla_{\mathbf{x}} (\mathbf{c}_{gr} N) = S_{nl} \qquad \mathbf{c}_{gr} = \nabla_{\mathbf{k}} \omega$$

$$S_{nl} = 4 \iiint |T_{\mathbf{k}\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}}|^{2} (N_{1}N_{2}N_{3} + N N_{2}N_{3} - N N_{1}N_{2} - N N_{1}N_{3}) \times$$

$$\times \operatorname{Im}[G(\Delta \omega, t)] \delta(\mathbf{k} + \mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3}) d\mathbf{k}_{1} d\mathbf{k}_{2} d\mathbf{k}_{3}$$

$$G(\Delta \omega, t) = \frac{1 - \exp(-i\Delta\omega t)}{\Delta\omega} \qquad \Delta \omega = \omega + \omega_{1} - \omega_{2} - \omega_{3}$$

The wave phases (arg b_k) are assumed to be random and completely independent.

Kinetic theory

The classical Hasselmann equation

$$S_{nl} = 4 \iiint \left| T_{\mathbf{k}\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}} \right|^{2} (N_{1}N_{2}N_{3} + N N_{2}N_{3} - N N_{1}N_{2} - N N_{1}N_{3}) \times$$

$$\times \operatorname{Im}[G(\Delta\omega,t)]\delta(\mathbf{k}+\mathbf{k}_{1}-\mathbf{k}_{2}-\mathbf{k}_{3})d\mathbf{k}_{1}d\mathbf{k}_{2}d\mathbf{k}_{3}$$
$$G(\Delta\omega,t) = \frac{1-\exp(-i\Delta\omega t)}{\Delta\omega} \qquad \Delta\omega = \omega + \omega_{1} - \omega_{2} - \omega_{3}$$

In the traditional (currently used) approach the long-term stage is considered, then $\text{Im}[G(\Delta\omega,t)] \rightarrow \pi \delta(\Delta\omega)$, and only resonant (nearly resonant) interactions play the role due to the two delta functions:

$$S_{nl} \approx 4\pi \iiint |T_{\mathbf{k}\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}}|^{2} (N_{1}N_{2}N_{3} + N N_{2}N_{3} - N N_{1}N_{2} - N N_{1}N_{3}) \times$$

$$\times \delta(\omega + \omega_1 - \omega_2 - \omega_3) \delta(\mathbf{k} + \mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3) d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3$$

For homogeneous conditions, the characteristic scale of the kinetic equation is $\sim N^{-2} \sim O(\omega_0 \varepsilon^{-4})$ (so-called kinetic scale).

For shorter times $\text{Im}[G(\Delta \omega, t)] \approx t$ and then the characteristic scale is two order faster, $O(\omega_0 \varepsilon^{-2})$ (so-called dynamic scale).

Thus, the traditional kinetic theory does not take into account fast processes.

Моделирование волн: вчера и сегодня

Характерный масштаб времени для кинетических уравнений $\sim \varepsilon^{-4}T_0 \sim 10^5$ с ~ 28 ч для крутизны волн $\varepsilon = 0.1$. За это время волны пробегают не менее 800 км.

Отличие формы интенсивных волн от синусоидальной – важный эффект. Он учитывается (в первом приближении) используемыми на практике моделями (second order theory).

При описании взаимодействий между волнами в кинетической теории использован ряд предположений и приближений:

- взаимодействия слабые, и соответствующие эффекты медленные
 - ⇒ сильно нелинейные волны не описываются;
 - ⇒ быстро развивающиеся нелинейные процессы (напр., модуляционная <u>неустойчивость *ε*-²*Т*₀) не о</u>писываются;
- фазы волн независимы
 - ⇒ когерентные паттерны не описываются;
 - ⇒ неверная форма спектров [Annenkov & Shrira, 2022];
- упрощенные формы записи коэффициента взаимодействия
 - ⇒ поведение на кинетических масштабах не всегда верно.

Перечисленные пункты (кроме последнего) – потенциальные условия возникновения аномальных волн в смысле существующего прогноза.

Narrow-banded weakly nonlinear waves

 $\lambda_4 \approx 3 + 24\varepsilon^2 + \frac{\pi}{\sqrt{3}}BFI^2$

Statistical moments for the surface displacement

Fourth statistical moment, the kurtosis

Can be *O*(1)

 $BFI = \frac{steepness}{bandwidth} \propto \frac{k_0 \eta_{rms}}{\Delta k/k_0}$

[Mori & Janssen, JPO2006]

The Gaussian statistics Bound wave contribution (wave non-sinusoidality)

Dynamic part: Benjamin-Feir instability (quasi-resonant interactions) [Onorato et al, 2001]

Exceedance probability for wave heights H

$$P(H) \approx \exp\left(-\frac{H^2}{8\sigma^2}\right)\left[1 + (\lambda_4 - 3)B\left(\frac{H}{\sigma}\right)\right]$$

$$B(\xi) = \frac{1}{384} \xi^2 (\xi^2 - 16)$$

The probability of large waves increases when the kurtosis surpasses the value of three

Large kurtosis is a signature of dangerous wave conditions

[Mori & Janssen, JPO2016]

24

Прямое численное моделирование

Ограничения кинетических моделей, используемых бюро прогноза:

- предполагают некоррелированность фаз волн
- ullet описывают очень медленную нелинейную эволюцию $\sim arepsilon^{-4}$
- ограничение слабой нелинейности, приближенное вычисление S_{nl}

Доминирующий тип неустойчивости волн умеренной крутизны на глубокой воде – модуляционная неустойчивость:

- возникновение коррелированных квартетов волн
- ♦ быстрый (т.н. «динамический») временной масштаб эволюции ~ ε⁻²
- волны вырастают вплоть до обрушения сильная нелинейность

Сопоставление эволюции 4-го статистического момента (эксцесса) по результатам расчета улучшенных кинетических уравнений (gKE), спектральных уравнений Захарова (DNS-ZE) и расчета исходных уравнений гидродинамики (HOS) [Annenkov & Shrira, 2018]

Outcomes

Higher probability of large waves

Long-lived soliton-like groups form occasionally in the direct numerical simulations of irregular waves with realistic for the sea not too much extreme conditions (JONSWAP spectrum, γ = 3, T_p = 10, H_s = 3.5 m, collinear waves)

Outcomes: Rogue waves

Hydrodynamic solitions can be revealed using the WIST

Windowed Inverse Scattering Transform

Example of a intense hydrodynamic envelope soliton found in two time instants using the WIST

Most of extreme wave occur on the top of the intense envelope soliton

Outcomes

Imprints in wave spectra

Coherent patterns correspond to a strong excursion from the dispersive relation and lead to the frequency broadening additional to the classic 'nonlinear frequency shift', to formation $\frac{2}{3}$ of straight lobes of nonlinear harmonics

2.5 -

0.5

[Slunyaev, 2020]

Аномальные состояния волн

В экспериментах по прямому численному моделированию волн мы наблюдаем две ситуации волновых состояний: «нормальные», когда предположения кинетической теории хорошо выполняются (фазы волн случайны и независимы),

и стандартное описание волн хорошо работает. Это волновые системы с широким угловым спектром.

Если же волны велики по амплитуде и обладают узким угловым спектром, то реализуются «аномальные состояния» с высокой вероятностью возникновения больших волн.

В наших работах мы показываем, что ответственными за возникновение высоких волн в таких аномальных состояниях являются когерентные волновые структуры (группы волн). Понимание эффекта позволяет предложить ряд ситуаций, когда реализуются «аномальные» условия.

Волны в море

- Пренебрежение эффектами накачки (ветер) и диссипации (вязкость) [небольшой интервал времен]
- 2. Потенциальные течения идеальной жидкости под действием силы гравитации
- 3. Собственная динамика волн (нет течений, дна, т.д.)
- 4. Слабая нелинейность / дисперсия
- 5. Плоская геометрия
- 6. Интегрируемые уравнения

Точные решения

упрощения

Волны-убийцы в математике

Аналогия между гидродинамикой и оптикой

Точные решения модельных уравнений, описывают и возникновение волн-убийц, и их нелинейную стадию, включая насыщение и максимально достигаемые амплитуды

Вид сверху на сложные решения типа волн-убийц, похожие на атомные структуры. Rogue wave solutions

Решения воспроизводятся в эксперименте

Теорией предлагается серия сценариев развития «волн-убийц» с многократным усилением амплитуды

Новые решения НУШ и других НДУ

Спектральная плоскость ассоциированной задачи рассеяния 0.8 0.6 0.4 $\sqrt{z_2}$ Imaginary Part 0.2 $\sqrt{z_1}$ -0.2 $-\sqrt{z_2}$ $\sqrt{z_3}$ -0.4 -0.6 -0.8 -1 -0.5 0 0.5 -1 Real Part

Математические определение волныубийцы на фоновой волне <u>*ψ*</u>(*x*,*t*)

«Математические» волны-убийцы удается построить только для модуляционно неустойчивых случаев (неустойчивость по отношению к длинным возмущениям, включая предел бесконечно длинных возмущений)

$$\max_{x \in \Re} | \boldsymbol{\psi}(x,t) - \boldsymbol{\psi}_b(x - x_{\pm}, t - t_{\pm}) | \to 0$$
$$M = \frac{\max_{(x,t) \in \Re^2} | \boldsymbol{\psi}(x,t) |}{\max_{(x,t) \in \Re^2} | \boldsymbol{\psi}_b(x,t) |} > M_{RW}$$

Вопрос о природе аномально высоких волн мотивировал исследования куда более широкого круга задач.

Насчитываются сотни миллионов инструментально измеренных волн, включая тысячи волн-убийц; но результаты статистической обработки натурных измерений противоречивы.

Были идентифицированы механизмы генерации аномально высоких волн, предложены новые физико-математические модели. Прототипы волн-убийц базируются на солитонных и бризерных решениях.

Пересмотрен взгляд на роль процессов нелинейной самомодуляции в стохастических полях морских волн.

Проблему морских волн-убийц нельзя считать решенной: действенность механизма нелинейной самомодуляции волн остается недоказанной для реальных условий.

Статистический вклад от редкого класса событий, соответствующих «аномальным» состояниям моря с большой вероятностью возникновения очень высоких волн, может быть небольшим. Но возможность прогнозировать такие условия будет иметь большую практическую пользу.

Предложены новые подходы для прогноза возникновения опасных волн.