

Генерация сверхмощного когерентного микроволнового излучения на основе эффектов захвата и самосинхронизации

Н.С. Гинзбург, Г.Г. Денисов, И.В.Зотова ИПФ РАН

Генерация сверхмощного излучения неизбежно требует использования сверхразмерных электродинамических систем. Поддержание когерентности излучения может быть достигнуто на основе эффектов самосинхронизации или эффектов захвата внешним сигналом.

План

- Синхронизация за счет естественной дифракционной расходимости излучения при умеренном параметре Френеля.
- Синхронизация излучения за счет организации двумерной распределенной обратной связи при больших параметрах Френеля.
- Захват внешним сигналом для обеспечения одномодовой генерации в гиротронах на первой и второй циклотронных гармониках и когерентного суммирования излучения гиротронных комплексов

1. Синхронизация за счет естественной дифракционной расходимости излучения при умеренном параметре Френеля

 $\psi = n \lambda / l_x$ - угол дифракционной расходимости моды с числом поперечных вариаций п $\Delta l_x = \psi l_z$

Условие дифракционной селекции

 $\Delta l_{x1} \sim l_x$

Селекция эффективна при параметрах Френеля ~ 1

$$N_F = \frac{{l_x}^2}{\lambda l_z} \sim 1$$

Планарная ЛОВ с дифракционной селекцией мод

$$\vec{E} = \operatorname{Re} \left[\vec{E}_{s} (y) A(z, x, t) e^{i(\omega t - hz)} \right]$$

$$\vec{I}_{x} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{-i\theta} d\theta_{0}$$

$$\left[\frac{\partial}{\partial \zeta} - \frac{\partial}{\partial Z} \right]^{2} \theta = \operatorname{Re}(Ae^{i\theta})$$

$$I_{z} = \sqrt{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{-i\theta} d\theta_{0}$$

$$\left[\frac{\partial}{\partial \zeta} - \frac{\partial}{\partial Z} \right]^{2} \theta = \operatorname{Re}(Ae^{i\theta})$$

$$A|_{z=0} = 0, \ \theta|_{z=L_{z}} = \theta_{0} \in [0, 2\pi), \ \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \tau} \right) \theta|_{z=L_{z}} = 0$$

$$\zeta = \tau + Z/\beta_{gr}$$

Излучательные граничные условия

Гинзбург, Завольский, Нусинович Сергеев (1986), нестационарная теория гиротронов

$$A^{H}_{T} A\left(\pm\frac{L_{X}}{2},Z\right) \pm \sqrt{\frac{1}{\pi i}} \int_{0}^{Z} \frac{1}{\sqrt{Z-Z'}} \frac{\partial A(X,Z')}{\partial X}\Big|_{X=\pm\frac{L_{X}}{2}} dZ' = 0$$

Приближение малого сигнала: инкременты и стартовые токи собственных мод

Характеристики стационарного режима генерации

Эволюция поперечной структуры

ф

 $L_x = 6 N_F \sim 1.2$

Переход к хаотическому режиму генерации при увеличении ширины электронного потока

 $L_z = 2.8 \ L_x = 30 \ N_F \sim 25$

Возбуждение поверхностной волны прямолинейным электронным пучком

Трёхмерное РІС моделирование нелинейной динамики ГПВ 75ГГц - диапазона

Пространственная структура компоненты поля H_x в стационарном одномодовом режиме генерации в плоскости (x, z)

Схема генератора поверхностной волны планарной геометрии с дифракционной селекцией мод

А.Палицин, Ю.Родин и др. $y \neq z$ 2 2 4 4 4 45

- 1: замедляющая система
- 2: прямолинейный релятивистский электронный пучок
- 3: градиентный поглотитель
- 4: коллектор
- 5: катодная диафрагма

Р=20МВт

Осциллограммы катодного напряжения (красная кривая) и импульса выходного излучения (синяя кривая)

Спектр излучения

Возникновение мультистабильности режимов при увеличении ширины ГПВ $l_x^e = 6 \ cm$ $l_x^e = 2 \ cm$ 1.6 r $\left| \hat{C}_{z}^{*} \right|$ $\left|\hat{C}_{:}^{+}\right|^{1.6}$ $N_F = \frac{l_x^{e^2}}{4l_z \lambda} \approx 1$ 1.2 -≈9 $N_{\rm F} =$ 0.8 0.8 0.4 0.4 300 100 200 20 60 0 40 80 t 1 \hat{C}_{z}^{+} $|\hat{C}_z^+|$

Возбуждение мод с различным числом вариаций поля по координате х

2. Синхронизация излучения за счет организации двумерной распределенной обратной связи при больших параметрах Френеля

PROJECT OF FULL-SCALE PLANAR FEM BASED ON THE U-2 ACCELERATOR

FEL2002

A.V. Arzhannikov, Budker Institute If Nuclear Institutes, NIV sibirsk

Using planar and coaxial 2D Bragg structures for synchronization of radiation of powerful sheet and hollow electron beam. Concept of 2D distributed feedback.

Ginzburg N.S., Peskov N.Yu., Sergeev A.S. // Opt.Comm. 1993. V.96. N4-6. P.254;

Coupled wave model of planar 2D Bragg resonator

$$a = a_1 \Big[\cos(\bar{h}x - \bar{h}z) + \cos(\bar{h}x + \bar{h}z) \Big] - corrugation \ profile$$

$$a_1 - \text{depth of corrugation}$$

Cavity field:
$$\vec{E} = \operatorname{Re}\left[\vec{E}_{p}(y)\left(A_{+}e^{-ihz} + A_{-}e^{ihz} + B_{+}e^{-ihz} + B_{-}e^{ihz}\right)e^{i\omega t}\right]$$

$$\begin{cases} A_{\pm}(x,z) \\ B_{\pm}(x,z) \end{cases} - slow functions$$

 $\overline{h}_{\pm} = \frac{2\pi}{d}$ – projections of translational

grating vectors, $\overline{h} = \overline{h}_{\pm} / \sqrt{2}$,

d – corrugation period ,

 \vec{h} – wave vectors of partial waves

Bragg resonance condition: $h \approx h$

Diagram illustrating the scattering of the partial waves on the 2D Bragg grating:

The coupled-wave equations (geometrical-optical approximation):

$$\frac{\partial A_{+}}{\partial z} + i\delta A_{+} + i\alpha \left(B_{+} + B_{-}\right) = 0 \quad \frac{\partial A_{-}}{\partial z} - i\delta A_{-} - i\alpha \left(B_{+} + B_{-}\right) = 0$$
$$\frac{\partial B_{+}}{\partial x} + i\delta B_{+} + i\alpha \left(A_{+} + A_{-}\right) = 0 \quad \frac{\partial B_{-}}{\partial x} - i\delta B_{-} - i\alpha \left(A_{+} + A_{-}\right) = 0$$

Boundary conditions:

e.m.energy fluxes from outside
and edge reflections are absent
$$\Rightarrow \begin{cases} A_{+}(x,-l_{z}/2) = 0 & A_{-}(x,l_{z}/2) = 0 \\ B_{+}(-l_{x}/2,z) = 0 & B_{-}(l_{z}/2,z) = 0 \end{cases}$$

Diffracti⊡n is neglected

Fresnel parameter :

Frequencies and Q-fact rs f 2D Bragg res nat r m des

Demonstration of high selectivity 2D Bragg resonator in 3D simulations (excitation of resonator by short microwave pulse)

3D code "CST Microwave Studio"

Asymmetrical transverse distribution of the incident wave beam

3D simulation of fundamental mode excitation

□artial waves structure □f fundamental m□de in ge□metrical-□ptical appr□ximati□n and 3D simulati□ns

"Cold" tests of 2D Bragg structure

measurement of transmission

normal incidence

inclined incidence

Time-domain model of planar FEM with 2D disutributed feedback

Simulation of nonlinear dynamics of planar FEM with hybrid Bragg resonator

Setting on steadystate generation regime

Spatial profile of partial waves in steady-state generation regime

Parameters of BINP FEM:

 L_{2D} =18cm, L_{0} =32cm, L_{1D} =18cm, L_{x} =10cm, α_{2D} = α_{1D} =0.07cm⁻¹, C=0.006

Two parallel oscillation channel driven by two parallel sheet beams

High power planar 75GHz FEM with 2D distributed feedback

single-mode oscillation regime

Генераторы поверхностной волны цилиндрической геометрии с двумерно-периодическими структурами

Самосогласованная система уравнений генератора поверхностной волны:

$$\frac{\partial \hat{C}_{z}^{+}}{\partial Z} + \frac{\partial \hat{C}_{z}^{+}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{z}^{+}}{\partial Y^{2}} = i \hat{\alpha}_{2D} (\hat{C}_{x}^{+} + \hat{C}_{x}^{-}) \delta(Y) - \frac{1}{B_{e}} \frac{\partial}{\partial Y} (JF(Y))$$

$$- \frac{\partial \hat{C}_{z}^{-}}{\partial Z} + \frac{\partial \hat{C}_{z}^{-}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{z}^{-}}{\partial Y^{2}} = i \hat{\alpha}_{2D} (\hat{C}_{x}^{+} + \hat{C}_{x}^{-}) \delta(Y)$$

$$\pm \frac{\partial \hat{C}_{x}^{\pm}}{\partial X} + \frac{\partial \hat{C}_{x}^{\pm}}{\partial \tau} + i \frac{\partial^{2} \hat{C}_{x}^{\pm}}{\partial Y^{2}} = i \hat{\alpha}_{2D} (\hat{C}_{z}^{+} + \hat{C}_{z}^{-}) \delta(Y)$$

$$C_{z,x}^{\pm} (X, Y)$$

Уравнения движения электронов:

$$\left(\frac{\partial}{\partial Z} + \beta_0^{-1}\frac{\partial}{\partial \tau}\right)^2 \theta = \operatorname{Re}\left[\frac{\partial \widehat{C}_z^+}{\partial Y}e^{i\theta}\right], \ J = 1/\pi \int_0^{2\pi} e^{-i\theta} d\theta_0.$$

Циклические граничные условия по азимутальной координате Х

$$C_{z,x}^{\pm}(x+l_{x},z,y,t) = C_{z,x}^{\pm}(x,z,y,t)$$

$$C_{z,x}^{\pm}(x,z,y,t) = \sum_{m=-\infty}^{\infty} C_{z,x}^{\pm m}(z,y,t) e^{2\pi i m x/l_{x}}$$

$$\hat{C}_{z}^{\pm}\Big|_{Z=0} = 0, \hat{C}_{z}^{\pm}\Big|_{Z=L_{z}} = 0$$

Моделирование цилиндрического генератора поверхностной волны с двумерно-периодическими структурами в рамках квазиоптической теории

75GHz cylindrical surface wave oscillator with 2D slow-wave structure

based on the «Sinus-6» accelerator 500 keV / 5 kA / 25 ns

transverse RF-field structure in the stationary generation regime

W-band cylindrical 2D slow-wave structure Oversize factor $@/\lambda \sim 10$ perimeter $\sim 32\lambda$

conventional machining technology

novel additive technology

Results of proof-of-principal experiments at W-band based on «Sunus-6» (IAP RAS) 0.5 MeV / 5 kA / 25 ns

Azimuthal modulation in the beam in the process of wave/e-beam interaction

Optical lasers with 2D Bragg structure formed by dielectric film with chessboard corrugated surface

Maxwell –Bloch equations

Balance approximation $T_2 \ll T_c$

$$\begin{cases} \mp \frac{\partial A_{z\pm}}{\partial Z} + \frac{\partial A_{z\pm}}{\partial t} + i\alpha (A_{x+} + A_{x-}) = j_{z\pm} \\ \mp \frac{\partial A_{x\pm}}{\partial X} + \frac{\partial A_{x\pm}}{\partial t} + i\alpha (A_{z+} + A_{z-}) = 0 \\ j_{z+} = \beta T_2 (2A_{z+}\rho_0 + A_{z-}\rho_{2z}) \\ j_{z-} = \beta T_2 (2A_{z-}\hat{\rho}_0 + A_{z+}\rho_{2z}^{*}) \\ \frac{\partial \rho_0}{\partial t} + \frac{(\rho_0 - 1)}{T_1} = -(A_{z+}j_{z+}^{*} + A_{z-}j_{z-}^{*}) \\ \frac{\partial \rho_{2z}}{\partial t} + \frac{\rho_{2z}}{T_1} = -(A_{z+}j_{z-}^{*} + A_{z-}j_{z+}^{*}) \end{cases}$$

Initial and boundary conditions

$$\begin{aligned} A_{z,x+} \Big|_{z,x=0} &= 0 & \rho_0 \Big|_{t=0} &= 0 & \rho_{2x} \Big|_{t=0} &= 0 \\ A_{z,x-} \Big|_{z,x=L_{z,x}} &= 0 & \rho_{2z} \Big|_{t=0} &= 0 & \rho_{z+x} \Big|_{t=0} &= 0 \\ \hat{A}_{z,x\pm} \Big|_{z=0} &= a_0 e^{i\varphi(x,z)} & \rho_{z-x} \Big|_{t=0} &= 0 \end{aligned}$$

 $\varphi(X,Z)$ -random function

 $T_{1,2}$ - relaxation constants

Radiation synchronization and establishment steady-state regime:

Development of a quantum well laser with 2D distributed feedback

□eter structure with inc rp rated 2D BraggInstitute f Applied hysics RAS res nat r: Institute f hysics f □ icr structures RAS

Institute f \square hysics and Techn \square \square gy (N. $N \square vg \square \square$)

 n^+ – GaAs substrate

Wavelenght	1 µm
Length and width ⊡f the c⊡rrugated area (L _z и L _x)	2mm, 0.5mm
Refracti⊡n indices (GaAs, In _{0.49} Ga _{0.51} ⊡)	3.24, 3.51
C⊡rrugati⊡n depth	35 nm
Linear gain	15 cm ⁻¹
Carrier density	3*10 ¹¹ cm ⁻²
Carrier lifetime with □ut radiati □n	3*10 ⁻¹⁰ s
Output p_wer	1 Вт
V.Ya.Aleshkin, B.N.ZVLhkLV et. al. Leaky-wave semiconductor laser with improved energetic characteristics and supernarrow dirrectional pattern Quantum ElectrLn. 2010 40 (10), 855857.	

3. Захват внешним сигналом для обеспечения одномодовой генерации в мощных гиротронах и когерентного суммирования излучения гиротронных комплексов

Gyrotron scheme

Gyrotron advantages

- 1. L w sensitivity t vel city spread
- 2. □igh m de selecti n in l ngitudinal and transverse indices
- 3. □igh efficiency

 $\omega_H \approx \omega_c$

Электронная селекция по поперечному индексу за счет выбора радиуса инжекции электронного пучка и расстройки циклотронного резонанса

Коэффициент связи

$$G_{mn} = \frac{J_{m-1}^2 \left(v_{mn} R_b / R \right)}{\left(v_{mn} - m^2 \right) J_m^2 \left(v_{mn} \right)}$$

R_b - радиус инжекции

Гиротроны для нагрева плазмы в установках управляемого термоядерного синтеза : 1 мw, cw, 170 GHz

Plasma heating, ITER

Gyrotrons: 1 MW, CW (110-170 GHz), mode TE31,8

Современные тенденции: существенное повышение мощности и частоты гиротронов

Захват колебаний мощных гиротронов внешним сигналом

Цели:

1. Повышение мощности и КПД, а также стабильности частоты генерации.

2. Создание систем когерентных мегаваттных гиротронов.

3. Селективное возбуждение высоких мод на второй циклотронной гармонике.

Perspective gyrotron with mode converter for co-and counter-rotation operating modes AV Chirkov, GG Denisov, AN Kuftin 2015/6/29 Applied Physics Letters

Ввод сигнала в резонатор гиротрона

Денисов Г.Г.

Два режима работы нового квазиоптического преобразователя:

- а) Преобразование мод обоих вращений в параксиальные пучки
- b) Ввод сигнала в резонатор гиротрона

Нестационарная самосогласованная модель гиротрона с захватом внешним сигналом. Одномодовое приближение

$$\vec{E} = \operatorname{Re}[A(z,t)\vec{E}_{s}(\vec{r}_{\perp})\exp(i\omega_{c}t)]$$

$$i\frac{\partial^{2}a}{\partial Z^{2}} + \frac{\partial a}{\partial \tau} + i\delta(Z)a = \frac{I}{2\pi}\int_{0}^{2\pi}pd\theta_{0}$$

$$\frac{\partial p}{\partial Z} + \frac{g^{2}}{4}\frac{\partial p}{\partial \tau} + ip(\Delta - 1 + |p|^{2}) = -a$$

$$\tau = \frac{\omega_c \beta_{\perp 0}^4 t}{8\beta_{\parallel 0}^2} \qquad a = \frac{eAJ_{m-1}(\omega_c R_0/c)}{m\omega_c c\beta_{\perp 0}^3 \gamma_0} \qquad I = 16 \frac{eI_b}{mc^3} \frac{\beta_{\parallel 0}}{\beta_{\perp 0}^6 \gamma_0} \frac{J_{m-1}^2(R_0 \omega_c/c)}{J_m^2(\nu_n)(\nu_n^2 - m^2)} \\ Z = \frac{\pi \beta_{\perp 0}^2 z}{\beta_{\parallel 0} \lambda} \qquad p = \frac{p_x + ip_y}{p_{\perp 0}} e^{-i\omega_c t + i(m-1)\phi} \qquad \Delta = 2(\omega_H - \omega_c)/\omega_c \beta_{\perp 0}^2$$

Модифицированное граничное условие

$$a(Z_{out},\tau) + \frac{1}{\sqrt{\pi i}} \int_{0}^{\tau} \frac{1}{\sqrt{\tau - \tau'}} \frac{\partial a(Z_{out},\tau')}{\partial Z} d\tau' = \mathbf{2}F(\tau)$$

Результаты моделирования для 170 ГГц/1 МВт гиротрона

Зависимость режима генерации от сценария включения гиротрона

Конкуренция «мод шепчущей» галереи с эквидистантным спектром.

$$\vec{T}E_{m,n} \quad m >> n$$
$$\vec{E} = \operatorname{Re}\left[A(z,\varphi,t)\vec{E}_{\perp}(r)e^{i(\overline{\omega}_{c}t - m_{0}\varphi)}\right]$$

*m*₀ - азимутальный индекс рабочей моды

$$\xi = \left(\beta_{\perp 0}^4 / 8\beta_{\parallel 0}^2\right) m_0 \varphi$$

mr

роизводная по азимутальной координате

$$i\frac{\partial^2 a}{\partial Z^2} + \frac{\partial a}{\partial \xi} + \frac{\partial a}{\partial \tau} + i\varepsilon(Z)a = \frac{I_0}{2\pi} \int_0^{2\pi} p d\theta_0,$$

$$\frac{\partial p}{\partial Z} + \frac{g^2}{4} \frac{\partial p}{\partial \tau} + ip(\Delta - 1 + |p|^2) = -a,$$

Разложение в ряд Фурье с учетом периодичности по азимутальной координате

$$a(\xi + L_{\phi}) = a(\xi)$$

 $L_{\phi} = 2\pi m_0 \left(\beta_{\perp 0}^4 / 8\beta_{\parallel 0}^2 \right)$ $a(Z,\xi,\tau) = \sum_q a_q(Z,\tau) e^{i\delta_q \xi}, \quad \delta_q = \frac{2\pi q}{L_{\phi}}$
- нормализованный периметр
волновода $q = m - m_0$

Конкуренция «мод шепчущей» галереи с эквидистантным спектром.

$$\begin{split} &i\frac{\partial^2 a_q}{\partial Z^2} + i\delta_q a_q + \frac{\partial a_q}{\partial \tau} + i\varepsilon(Z)a_q = \frac{I_0}{2\pi L_{\varphi}} \int_0^{L_{\varphi}} \int_0^{2\pi} p e^{-i\delta_q \xi} d\theta_0 d\xi , \\ &\frac{\partial p}{\partial Z} + \frac{g^2}{4} \frac{\partial p}{\partial \tau} + ip(\Delta - 1 + |p|^2) = -\sum_q a_q(Z, \tau) e^{i\delta_q \xi}. \end{split}$$

Модифицированное граничное условие с внешним сигналом для рабочей моды

$$a_0(L,\tau) + \frac{1}{\sqrt{\pi i}} \int_0^{\tau} \frac{1}{\sqrt{\tau - \tau'}} \frac{\partial a_0(L,\tau')}{\partial Z} d\tau' = 2F(\tau)e^{i\Omega\tau} \qquad q = 0 \qquad (m = m_0)$$

Стандартное (излучательное) граничное условие для конкурирующих мод

$$a_q(L,\tau) + \frac{1}{\sqrt{\pi i}} \int_0^{\tau} \frac{e^{-i\delta_q(\tau-\tau')}}{\sqrt{\tau-\tau'}} \frac{\partial a_q(L,\tau')}{\partial Z} d\tau' = 0, \quad q \neq 0$$

Результаты моделирования $L_{\Phi} = 10$

 $\Delta = 0.5$ - оптимальная по КПД расстройка для рабочей моды

В конкуренции побеждает паразитная мода. Генерация с низким КПД.

В конкуренции побеждает рабочая мода. Генерация с высоким КПД.

Нестационарные уравнения гиротрона с конкуренцией неэквидистантных мод

$$i\frac{\partial^{2}a_{n}}{\partial Z^{2}} + s_{n}\frac{\partial a_{n}}{\partial \tau} + \left(i\varepsilon_{n}\left(Z\right) + i\Delta_{n}\left(\tau\right) + \sigma_{n}\right)a_{n} = i\frac{I_{n}}{4\pi^{2}}\int_{0}^{2\pi}\int_{0}^{2\pi}p^{s_{n}}e^{i\left(m_{n}-s_{n}\right)\phi}d\theta_{0}d\phi,$$

$$\frac{\partial p}{\partial Z} + \frac{g^{2}}{4}\frac{\partial p}{\partial \tau} + i\frac{\alpha_{\perp}^{2}}{\alpha_{\Box}}p\left(|p|^{2}-1\right) = i\sum_{n}a_{n}\left(p^{*}\right)^{s_{n}-1}e^{-i\left(m_{n}-s_{n}\right)\phi}.$$

$$\tau = \frac{\overline{\beta}_{\perp}^{4}}{8\overline{\beta}_{\parallel}^{2}}\overline{\omega}_{H}t, \quad Z = \frac{\overline{\beta}_{\perp}^{2}}{2\overline{\beta}_{\parallel}}\frac{\overline{\omega}_{H}}{c}z \qquad a_{n} = \frac{eA_{n}}{mc\overline{\omega}_{H}}\frac{s_{n}^{s_{n}}}{2^{s_{n}-1}s_{n}!}\frac{\overline{\beta}_{\perp}^{s_{n}-4}}{\overline{\gamma}} \quad \overline{I}_{n} = 64\frac{e\overline{I}_{b}}{mc^{3}}\frac{\overline{\beta}_{\parallel}\overline{\beta}_{\perp}^{2(s_{n}-4)}}{\overline{\gamma}}s_{n}^{3}\left(\frac{s_{n}^{s_{n}}}{2^{s_{n}}s_{n}!}\right)^{2}\frac{J_{m_{n}-s_{n}}^{2}\left(\overline{\omega}_{n}^{c}R_{b}/c\right)}{\left(v_{n}^{2}-m_{n}^{2}\right)J_{m_{n}}^{2}\left(v_{n}\right)}$$

$$\Delta_{n}(\tau) = 8\overline{\beta}_{\parallel}^{2} s_{n}^{2} \left(s_{n} \omega_{H}(\tau) - \overline{\omega}_{n}^{c} \right) / \overline{\omega}_{n}^{c} \overline{\beta}_{\perp}^{4}$$

- Расстройка циклотронного резонанса, описывающая сценарий включения гиротрона при изменении ускоряющего напряжения

$$\varepsilon_{n}(Z) = 8\overline{\beta}_{\parallel}^{2} s_{n}^{2} \left(\overline{\omega}_{n}^{C} - \omega_{n}^{C}(Z)\right) / \overline{\omega}_{n}^{C} \overline{\beta}_{\perp}^{4}$$

- профиль резонатора

Результаты моделирования для 230ГГц/1 МВт гиротрона (DE□O). Рабочая мода TE33,13 (первая циклотронная гармоника)

Захват гиротрона на 2й циклотронной гармонике

Результаты расчетов для МВт гиротрона с частотой 230 Ггц на второй циклотронной гармонике

Institute of Applied Physics of the Russian Academy of Sciences

The International Conference of Infrared, Millimeter, and Terahertz Waves, 2021

Режим свободной генерации: возбуждение паразитной моды на основном циклотронном резонансе

Режим захвата: генерация на второй циклотронной гармонике.

выводы

- В мощных генераторах с предельно сверхразмерными многомодовыми электродинамическими системами путем внутренней или внешней синхронизации могут быть получены простые одномодовые одночастотные автоколебательные режимы
- Теоретический анализ указанных режимов требует построения многомерных пространственно-временных, в т.ч.
 квазиоптических моделей.
- К настоящему времени имеется достаточно большое число экспериментальных подтверждений развиваемых подходов и ведутся дальнейшие исследования.

- Спасибо за внимание.
- Авторы признательны А.С.Сергееву, Н.Ю. Пескову, АМ. Малкину, В.Ю Заславскому и Ю.В Новожиловой, внесших существенный вклад в тематику доклада

- Четверг
- Ю.В.Новожилова, СТАБИЛИЗАЦИЯ ЧАСТОТЫ ДВУХ АВТОГЕНЕРАТОРОВ ОТРАЖЕНИЕМ ОТ ВНЕШНЕГО ВЫСОКОДОБРОТНОГО РЕЗОНАТОРА

Захват гиротрона на основном циклотронном резонансе

Гиротрон 345 ГГц:

слева – без внешнего сигнала, справа – 27 кВт внешний сигнал обеспечивает работу гиротрона с модой ТЕ56.24 и мощностью 1.27 МВт.

G. Denis v, N. Nvzhil va, V. Bakunin, rincipal Enhancement f Tz-Range Gyr tr n arameters Using Injecti n Lcking, EDL 2020 Coaxial FEM with hybrid resonator consisting of upstream 2D Bragg and downstream 1D Bragg mirrors

Azimuthal m de selecti n can be explained by the fact that verlapping f reflecti n z ne takes place nly f r fundamental symmetric m de: m=0

N nlinear m deling f m de selecti n in 37 G z FE with hybrid Bragg res nat r

Zones of stationary generation regimes corresponding to excitation of modes with different number of azimuthal variation m

Experimental studies of co-axial 37 GHz FEM with 2D distributed feedback

Department of Physics, University of Strathclyde

Co-axial 2D Bragg structure

Resonator *perimeter* $l_x = 25\lambda$

beam energy 0.5 MeV beam current 0.5 - 1 kA pulse duration 250 ns beam diameter 7 cm

37 GHz FEM Experiments with Hybrid Bragg Resonator

Spectrum measurements by cut-off filters demonstrate azimuthal mode selection

Heterodyne diagnostic of radiation spectrum demonstrates azimuthal and longitudinal mode selection

