Возбуждения в квантовой жидкости - нелинейные волны и квантовые вихри

В.Б.Ефимов, Институт физики твердого тела РАН, Черноголовка, Московская обл., Россия

При температурах ниже 2.17 К гелий перестает кипеты

Sebastien Balibar, Looking Back at Superfluid Helium ,Seminaire Poincare,1 (2003) (arXiv:0303561)(2003)

Сверхтекучий гелий

Сверхтекучесть жидкого гелия. Конденсация Бозе — Эйнштейна. Жидкость состоит из множества невзаимодействующих частиц, находящихся в одном состоянии и имеющих одну квантово-ме

Сверхтекучий гелий _{Re} = <u>UL</u> кинематическая вязкость

Среда	Температура	v, cm²/c
Глицерин (Glycerine)	20° C	6.8
Воздух (Air)	20° C	0.15
Спирт (Ethanol)	20° C	0.022
Вода (Water)	20° C	0.010
Ртуть (Mercury)	20° C	1.2*10 ⁻³
Газообразный гелий (He-gas)	5.5 K (2.8 bar)	3.21*10 ⁻⁴
Жидкий гелий (Helium I)	2.25 K (SVP)	1.96*10 ⁻⁴
Сверхтекучий гелий (Helium II)	1.8 K (SVP)	9.01*10 ⁻⁵

Эксперименты П.Л.Капицы с оптическими щелями v < 10⁻¹⁰ cm²/c (?)

Сверхтекучий гелий

Сверхтекучесть жидкого гелия. Конденс Жидкость состоит из множества невзаил находящихся в одном состоянии и имек механическую волну в макромасштабах $\psi = \sqrt{\rho_s} \exp(iS(r,t))$ – волновая функция о S(r, t) – фаза волновой функции и нормиру частиц в конденсате. В этом состоянии ниж

конденсации окажется макроскопически много частиц (оозоны!)

 $\vec{v}_S = \frac{\hbar}{m} \vec{\nabla} S$ — свойство потенциальности сверхтекучей скорости

Но фаза определена с точностью до 2π!

$$\oint_{L} \vec{v}_{S} d\vec{l} = 2\pi \frac{\hbar}{m} n = \frac{h}{m} n$$

Сверхтекучесть и энергетический спектр

гелия

- При температурах ниже 1.7 К вся термодинамика = свойства газов фононов и ротонов
 При температурах ниже 0.8К фононный вклад доминирует.
- Это сразу объясняет появление «закона Дебая» в теплоёмкости.

 d_{20} Maxons Maxons $R^ R^+$ R^+ R^+ Rotons p_0 $q_{4.0}$ MOMENTUM (Å⁻¹)

Фононы $v_{Ph}=237 \text{ m/s};$ Ротоны $E = \Delta + \hbar^2 \frac{(k-k_0)^2}{2m}$ $k_0=1.91 \text{ Å}^{-1}$ $m=0.16m_{\text{He}}$ $\Delta=8.6 \text{ K}$

Сверхтекучесть и энергетический спектр

гелия

Опыт: T=0, жидкость течёт через трубку с неровными стенками. При каких условиях начнут появляться квазичастицы (=передача энергии жидкости=диссипация энергии)?

Нарушения сверхтекучести наблюдается при превышении «критической скорости» при протекании гелия через щели малого размера.

$$V > \left(\frac{d\varepsilon}{dp}\right)_{p=p_m} \cong \frac{1}{m_r} \left(\sqrt{2m_r \Delta + p_0^2} - p_0\right) \sim 60 \frac{m_r}{s}$$

Фононы *v_{Ph}=237 m/s;*

Ротоны
$$E = \Delta + \hbar^2 \frac{(k-k_0)^2}{2m}$$

 $k_0=1.91 \text{ Å}^{-1}$
 $m=0.16m_{\text{He}}$
 $\Delta=8.6 \text{ K}$

ЭЬ

KINIC

А если Т \neq 0? Присутствующие в жидкости возбуждения будут отражаться от стенок и жидкость передавать им часть своего импульса – для жидкости увлекаемой возбуждениями торможение о стенки (нормальная жидкость с трением). Таким образом при Т=0 через капилляр протекает вся жидкость, при Т \neq 0 – лишь часть. Этофононы $v_{Ph}=237 m/s$; и есть возможность двух независимых движений: нормального и сверхтекучего.

T≠0

ктр

 $\rho = \rho_s + \rho_n;$ $j = \rho_s v_s + \rho_n v_n.$

и существование нормальной и сверхтекучей компонент

Ротоны $E = \Delta + \hbar^2 \frac{(k-k_0)^2}{2m}$ $k_0=1.91 \text{ Å}^{-1}$ $m=0.16m_{\text{He}}$ $\Delta=8.6 \text{ K}$

Квантовые вихри

Ноября

Разница в скоростях формирования турбулентности и нарушения сверхтекучести объясняет различие вязкости в объеме и сверхтекучести в оптических

зазорах

Out Fork full results....all Temp , P = 5bar, 6bar

НЕЛИНЕЙНЫЕ ВОЛНЫ – 2022, 10 Ноября

Генерация вихрей тепловым

Двухжидкостная модель: нормальная и сверхтекучая компоненты

2nd sound

$$\begin{split} \rho &= \rho_s + \rho_n; \\ j &= \rho_s v_s + \rho_n v_n. \end{split}$$

Число частиц в основ

Entropy-temperature oscillations, S and T oscillate in phase. eg thermal standing wave in tube. $c_2 = \lambda/n$. Region of high T, v_N flows away from, whilst $v_{\mathcal{C}}$ flows to it $\rightarrow v_N$ and $v_{\mathcal{C}}$ in anti-phase. Overall density is

Свойства в

- Малая скорость волн втор
- Слабое затухание
- Линейный закон дисперси
- Сильная нелинейность у скорости второго звука от

Свойства второго звука

- Малая скорость волн второго звука
- Слабое затухание
- Линейный закон дисперсии k~ω
- Сильная нелинейность скорости второго звука от амплитуды (∆Т~мК).

Уравнение Бюргерса

$$\frac{\partial}{\partial t}\delta T + u_{20}(1 + \alpha\delta T)\frac{\partial}{\partial x}\delta T = \nu \frac{\partial^2}{\partial x^2}\delta T$$

Зависимость скорости второго звука от амплитуды волны:

$$u_2(\delta T) = u_{20}(1 + \alpha \delta T)$$

орого звука

го звука

k~ω

рости второго звука от

X

->

X

$$P_{P_{1}} = A_{X_{2}} = A_{X$$

Передача энергии при акустической турбулентности

Передача энергии при акустической турбулентности

Spectrum of temperature oscillations of the nonlinear second sound waves in a resonator

Ноября

Передача энергии при акустической турбулентности

Формирование «Колмогоровского» каскада

Temperature amplitude in resonator

Формирование «Колмогоровского» каскада

27

ИНЫЕ ВОЛНЫ – 2022, 10

Ноября

Распад прямого каскада

- We applied harmonic (~sin(ωt)) signal from generator to heater in cylinder resonator.
- After formation the nonlinear wave spectrum (a) we switched off the pumping signal and have observed transformation of the harmonics with time (b).

Распад прямого каскада

Нестационарные процессы

What we are waiting for? An initial assumption – the *self-similar* process of formation and decay [Zakharov et al]

Комбинационные частоты

При приложении частоты $f_{\rm D}$ =3168 Hz (32 резонанс) получается каскад A(ω)~ $\omega^{-1.62}$ (зеленая линия). Наложение дополнительно еще одной слабой волны $f_{\rm D}$ =1084 Hz (11 резонанс) приводит к возникновению комбинационных частот и подавлении каскада A(ω)~ $\omega^{-2.15}$ (красная линия).

Формирование обратного каскада

$\omega_f \rightarrow \omega_2 + \omega_1$

Формирование обратного каскала

Потоки энергии при обратном

Моделирование Большого Взрыва

Вселенная возникла 13,799 ± 0,021 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается.

В период времени от нуля до 10⁻⁴⁰ секунд после Большого взрыва происходили процессы рождения Вселенной из сингулярности.

Наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 10³² К (Планковская температура) и плотностью около 10⁹³ г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. Приблизительно через 10⁻⁴² секунд после момента Большого взрыва фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции и завершился через 10⁻³⁶ секунд после момента Большого взрыва.

После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны.

В ранней Вселенной взаимодействие может распространяться только со скоростью света с. Это означает, что в момент времени t области Вселенной, разделенные расстоянием, превышающим d=ct, не могут ничего знать друг о друге. При фазовом переходе, нарушающем симметрию, разные регионы Вселенной выберут попадание в разные минимумы в наборе возможных состояний. Топологические дефекты как раз и являются "границами" между этими областями с разным выбором минимумов, и поэтому их образование является неизбежным следствием того, что разные области не могут договориться о своем выборе.

Ожидается, что фазовые переходы с нарушением симметрии, происходящие в ранней Вселенной, оставят после себя долгоживущие топологически стабильные структуры, такие как монополи, струны или доменные стенки.

Вблизи перехода второго рода вклад потенциальной энергии *V* в плотность свободной энергии можно аппроксимировать выражением $V = \alpha |\psi|^2 + 1/2\beta |\psi|^4$

ся, когда параметр порядка (поле Хиггса) ψ будет ной симметрии α отрицателен и V имеет форму

Если соседние области имеют энергию разного знака (скажем, + и -), в пространстве образуются доменные стенки, если разные фазы - струны.

Ожидается, что фазовые переходы с нарушением симметрии, происходящие в ранней Вселенной, оставят после себя долгоживущие топологически стабильные структуры, такие как монополи, струны или доменные стенки.

Вблизи перехода второго рода вклад потенциальной энергии *V* в плотность свободной энергии можно аппроксимировать выражением $V = \alpha |\psi|^2 + 1/2\beta |\psi|^4$

Струна сможет сформироваться, когда параметр порядка (поле Хиггса) *ψ* будет комплексным. В фазе нарушенной симметрии α отрицателен и *V* имеет форму

Ожидается, что фазовые переходы с нарушением симметрии, происходящие в ранней Вселенной, оставят после себя долгоживущие топологически стабильные структуры, такие как монополи, струны или доменные стенки.

Вблизи перехода второго рода вклад потенциальной энергии *V* в плотность свободной энергии можно аппроксимировать выражением $V = \alpha |\psi|^2 + 1/2\beta |\psi|^4$

Струна сможет сформироваться, когда параметр порядка (поле Хиггса) ψ будет комплексным. В фазе нарушенной симметрии α отрицателен и V имеет форму сомбреро.

В теории сверхтекучей бозе-жидкости, предполагая, что атомы жидкости являются твёрдыми шариками, которые взаимодействуют только при непосредственных столкновениях (δ-взаимодействие), а дальнодействующие взаимодействия отсутствуют, плотность энергии можно записать в виде

$$e(x)=rac{\hbar^2}{2M}|
abla\psi|^2+rac{g}{2}|\psi|^4,$$

где ψ — комплексное поле, соответствующее волновой функции атомов жидкости, M — масса атомов жидкости, g — параметр взаимодействия. Химический потенциал имеет вид μ =- μ_0 (T/T₂-1)

Моделирование Большого Взрыва в сверхтекучем гелии

W. H. Zurek, Nature London 317, 505 1985

Изменение давления происходит со скоростью первого звука, а конфигурация у формируется с более медленной скоростью второго звука.

При мгновенном переходе размер независимой области (со случайной фазой волновой функции) определяется корреляционной длиной ξ_i при T_f и $d=\xi_i$. При бесконечно медленном переходе корреляционная длина успела бы стать бесконечной при T=T_{λ} и плотности вихрей равна нулю.

$$L_i = \frac{1.2 \times 10^8}{(\tau_Q / 100)^{2/3}}$$

 τ_Q is in milliseconds

Quench в сверхтекучий гелий

ие Большого Взрыва текучем гелии

W. H. Zurek, Nature London 317, 505 1985

Изменение давления происходит со скоростью первого звука, а конфигурация у формируется с более

ИНЕЙНЫЕ ВОЛНЫ – 2022, 10

Ноября

- Сигналы второго звука в ячейке в состоянии равновесия и после одиночного запуска.
- L=3 MM

Ноября

Сверхтекучий гелий как модельная среда

- Малая вязкость
- Квантовые вихри квантовая турбулентность Сильно нелинейные волны – акустическая турбулентность (УФН, 188, 10, 1025, (2018))
- Взаимодействие квантовой и акустической турбулентности (12 Ноября 2022, стендовая сессия 3, Есина Алеся, постер 16)

Благодарю за внимание!

НЕЛИНЕЙНЫЕ ВОЛНЫ – 2022, 10 Ноября

presentation-creation49u